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Introduction 

Smart polymer often referred to a stimuli-responsive 
polymer whose structures and functions respond to physical 
and chemical stimuli such as temperature, humidity, pH, 
solvent quality, etc. It has been drawing much attention in 
recent years due to its practical applications ranging from 
bio-technology to material science.1,2,3,4 Drug transportation 
is a representative example of such smart polymer 
applications. An insulin-dependent diabetic needs insulin 
with increasing internal glucose concentration. An insulin 
carrier made of smart polymers changes its structure to 
release insulin by detecting glucose molecules inside a 
patient’s body. However, physics of such smart polymers 
linked with chemical stimuli is still a theoretically 
challenging problem, while thermo-responsive polymers 
have been well understood by a number of researchers.3,4 
Since the temperature of human body is almost constant, it is 
highly desired to understand the structural behavior of 
polymers under changing chemical environment. 

Solvent quality is one of well-known stimuli for a stimuli-
responsive polymer. The idea that solvent quality controls 
the polymer structure has been traditionally accepted, such 
that good solvent makes the polymer swell and a poor 
solvent makes it collapse. It is recently shown that, however, 
such theoretical framework breaks when a polymer is 
solvated in mixed good solvents. One experimental study 

reported that a lower critical solution temperature (LCST) of 
poly-N-isopropylacrylamide (PNIPAm) changes non-
monotonically in mixed water/methanal solvent with 
increasing the methanol fraction.5 This finding supported an 
interesting coil-globule-coil transition in the mixed solvent 
even if two solvents are both good. It is usually called co-
nonsolvency. In order to understand physics behind this 
abnormal transition, Flory-Huggins type5,7 and hydrogen-
bonding arguments6,8 have been provided. Most fascinating 
approach for this behavior was asserted by Mukherji, which 
is a general bridging scenario of a cosolvent molecule 
between two monomers.9,10,11 An effect of such local density 
fluctuation was modeled by an adsorption argument with 
additional free energy penalty for polymer looping, which 
plays a central role in the globule-coil reentrance. It is also 
interesting to note that coil-globule transition with adding 
small fraction of cosolvent is first order-like transition, while 
globule-coil transition is continuous. 

According to the argument above, polymers with other 
topologies such as ring and branched polymers are expected 
to show distinct co-nonsolvency behaviors due to different 
free energy penalties for looping. Especially, a ring polymer 
has no chain end resulting in higher looping probability than 
linear counterpart. Its topological effects on the structure 
have been intensively studied ranging from a dilute solution 
to a concentrated melt.12,13,14,15,16,17 Although half of the ring 
follows a self-avoiding walk (SAW) in a good solvent, the 
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topology of connected ends leads to the high integrated 
looping probability. Moreover, its potential application as a 
smart polymer has been spotlighted since recent experiments 
synthesized and purified the ring polymers.17 In this study, 
therefore, we provide a general picture of ring polymer co-
nonsolvency using Monte-Carlo simulations of off-lattice 
bead-spring model. The adsorption argument is also applied 
to ring polymers to explain our results. 

This paper is organized as follows. We first explain 
details of our model and simulation methods. After 
providing simple theories for polymer and liquid systems to 
apply them to our arguments, we show the results including 
polymer sizes, bridging fractions, and chemical potentials of 
a polymer as a function of cosolvent fraction. To clarify the 
structure in each condition, we also present radial 
distribution functions and single molecule structure factors. 
Concluding remarks follows in the final section. 

Theory and Computational Method 

  In this work, we use coarse-grained bead-spring 
model and spherical solvent molecules similar with Ref 6.9,18 
First, a polymer is composed of spherical beads connected 
by harmonic potential. Each bead represents a Kuhn 
monomer and the non-bonded interaction between two 
monomers are modeled by repulsive Lennard-Jones potential, 
such that: 

 
(1) 

with εm=1.0ε and σm=1.0σ, where ε and σ is a unit energy 
and a unit length, respectively. Two bonded monomers are 
excluded for this non-bonded interaction, but those are 
connected by a harmonic bond, such that: 

. (2) 

We use a large force constant of k=100.0ε/σ2 to prevent 
bond-crossing event during simulations. Two kinds of 
solvents are used to fill up the polymer system, and both 
mimic well-mixed polymer solution systems. One kind of 
solvent molecules (later termed a good solvent, GS) solvate 
a polymer well, and the non-bonded interaction between a 
monomer and a good solvent is modeled by repulsive 
Lennard-Jones, such as: 

 
(3) 

where εmg=1.0ε and σmg=0.75σ. Another kind of solvents is 
also good (termed a better solvent or cosolvent, BS) modeled 
by the shifted Lennard-Jones potential between a solvent and 
a monomer, such that: 

 
(4) 

where εmb=1.0ε and σmb=0.75σ. Attractive force between the 
better solvent and a monomer plays a critical role in co-
nonsolvency. Three solvent pairs of GS-GS, BS-BS, and 
GS-BS are represented by the same repulsive Lennard-Jones 
potential of Eqn. (1), but with ε ij=1.0ε and σ ij=0.5σ. It is 
important to note that a polymer in good solvents is modeled 
by only repulsive potentials, but a swelling configuration of 
a polymer is entropically favored at a finite temperature. 

 

Figure 1. Simulation snapshots of N l=30 ring polymers at 
cosolvent fraction (a) xc=0.1 and (b) xc=0.9. Beads 
colored by red and blue represent a monomer and a 
cosolvent, respectively. For clarity, contacting cosolvent 
molecules on the polymer are only depicted.   

Monte-Carlo simulation is employed to sample NVT 
trajectories of polymer solutions. After randomly choosing a 
particle, we try to move it with the maximum displacement 
of 0.5σ using the classical Metropolis algorithm. This 
maximum distance guarantees no bond-crossing event 
between polymer segments in our simulation temperature, 
T=0.5ε/k. We performed simulations for two topologically 
different polymers, linear and ring polymers, with the 
number of Kuhn segments N l=10 and 30. The polymer is 
solvated by 2.5×104 solvent molecules. For each polymer 
case, we simulate eleven different solvent compositions 
ranging from xc=0.0 to 1.0 at an interval of 0.1. The size of 
cubic box L is chosen to the average pressure being 40ε/σ3, 
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so that L=22.0σ. Periodic boundary condition is used in all 
directions. Each system is equilibrated during 1.0×104 Monte 
Carlo steps (MCS) and all simulation results are analyzed 
from production runs during 1.0×104 MCS. Figure 1 shows 
simulation snapshots of our systems. 

Results and Discussion 

In order to verify our results, we first calculate radius of 
gyration of linear polymers of N l=30 as a function of 
cosolvent fraction. An experimental result for PNIPAm in 
water/methanol mixed solvent is also plotted with our 
simulation results in Fig. 2(a).19 In addition, normalized 
radius of gyration by its value at xc=0.0 for four different 
polymer systems are also depicted in Fig. 2(b). All of these 
results show that our simulations reproduce coil-globule-coil 
transition as well as experiments and other simulation 
studies. It clearly shows the first order-like transition at 
xc=0.0~0.1. With increasing cosolvent concentration, 
polymer slowly swells which is also well consistent with 
previous studies. In this figure, one can find that linear 
polymers contract much rapidly than ring polymers when a 
small number of cosolvents are added. 

(a)  

(b)  

Figure 2. Radius of gyration Rg as a function of cosolvent 
molar fraction xc. (a) Radius of gyration of linear polymer 
with chanin length Nl=30. For comparison, we include 

experimental data obtained from the degree of volume 
swelling ratio q for PNIPAm. (b) Normalized radii of 
gyration Rg/Rg(xc=0) as function of cosolvent molar fraction 
xc is shown. 

 

Observing detailed structures of polymers is essential to 
discuss the coil-golbule-coil transition as a function of 
cosolvent fraction. To do so, we briefly explain the simple 
theories for polymer structures in good and poor solvents. It 
is very instructive to introduce the concept of an excluded 
volume of a monomer, which is determined by effective 
interaction between two monomers, such that: 

. (5) 

Here, ueff(r) is a effective potential between two monomers 
as a function of distance between them, r, k is Boltzmann 
constant and T is system temperature. The positive excluded 
volume means that two monomers feel effectively repulsive 
force, thus if the polymer is in a good solvent then vex>0. 
The negative vex reflects the effective attraction between two 
monomers, which is the case of a polymer in a poor solvent. 
It is important to note that the excluded volume depends not 
only on the solvent quality but the temperature. The 
condition of vex=0 is usually called θ-condition (θ-solvent 
and θ-temperature), and linear polymers follow ideal 
statistics in this condition. 

   To find the scaling relation between the mass and the 
size of polymers in a good solvent, we construct a free 
energy as a function of polymer size, R, and degree of 
polymerization, N. We first consider entropy of the chain as 
chain extension. If the chain is ideal, the probability of the 
size of end-to-end vector, purely originated from entropy, is 
Gaussian (~exp[-R2/2Nb2]), where b is Kuhn length. 
Therefore, free energy penalty for chain stretching is 
proportional to kTR2/2Nb2. Because the excluded volume of 
a monomer is positive, there is an energetic penalty for 
overlapping monomers. The probability that a monomer 
with an excluded volume vex overlaps with other monomers 
in the same polymer is proportional to vexN/R3. Since there 
are N monomers in a single polymer, total energetic 
contribution can be written as kTvexN2/R3. The free energy of 
a polymer in a good solvent is given by: 

. (6) 

Minimizing it with respect to R gives the relation between R 
and N, such that: 

. (7) 
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This approach is called Flory theory for SAW polymers and 
the scaling exponent for N is referred to Flory exponent, ν.20 
More sophisticated calculation using renormlization group 
theory gives ν=0.588. Calculating Flory exponent for 
polymers in a poor solvent is much straightforward. Since it 
is highly collapsed, we can imagine a large sphere including 
all monomers of a polymer without any empty space. In this 
case, mass of the system is proportional to cube of size, 
which leads to R~N1/3. 

  Single molecule structure factor is the most efficient way 
to calculate Flory exponent not only in experiment but also 
in theoretical studies. It is usually calculated by: 

, 
(8) 

  

where r ij is a bond vector between two monomers in a single 
polymer. It is well known that S(q)=N where <Rg>q <1 and 
S(q)~q-1/ν where 1/<Rg> < q < 1/b. Figure 2 shows single 
molecule structure factors for linear and ring polymer in 
xc=0.0 and 0.1 conditions. One can find that for both linear 
and ring polymer cases, pure good solvent makes the 
polymer swells with the expoenent ν=3/5. At xc=0.1,  
S(q)~q-3 strongly indicates the collapsed polymer structures. 
For a swollen ring polymer, slight change of the exponent at 
q=1 is caused by its topology of connected chain end.   

Figure 3. Normalized structure factors S(q)/S(0) for 
linear and ring polymer with a chain length Nl=30 in 
different cosolvent fraction, xc=0.0 and 0.1. Squares and 
circles represent linear and ring polymer results, respectively. 
Different colors means different cosolvent concentrations 
and two scaling lines of ν=3/5 and 1/3 are drawn to guide an 
eye. 

  It has been recently known that such a rapid change in 
structure is closely linked to the bridging between a better 
solvent and monomers. Bridging structure means that a 
better solvent molecule connects two separating monomers 

in space due to their strong attractive force. In mixed 
good/better solvent condition, two contributions compete 
each other-one is entropically favored swollen structure and 
the other is energetic contribution which maximize the 
number of bridging cosolvents. When the number of better 
solvents is small, energy dominates over the entropic penalty 
for adsorption of cosolvent on the polymer backbone, which 
leads to the collapsed structure. With increasing the better 
solvent fraction, the entropic penalty increases and the 
polymer slowly reentrants into swelling regime. Figure 4(a) 
shows bridging fraction of as a function of cosolvent 
fraction. Here, we define a contact between a monomer and 
a cosolvent such that the distance between is closer than 
21/6σmb. And then, we also define the bridging fraction by the 
number of cosolvent molecules contacting with two 
separating monomers divided by the total number of 
interacting sites on polymer backbone. In both polymers, the 
bridging fraction has a maximum value at xc=0.1~0.2, and 
again decreases as xc increases. This is well consistent with 
the argument above and the results of gyration radii which 
the smallest in this concentration (Fig. 2(b)). It is also 
noteworthy that the bridging fraction of rings decreases 
slightly slower than linear polymers with increasing xc, 
which is closely related to the looping probability. 

(a) 

   

(b) 
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Figure 4. Bridging fraction as a function of cosolvent 
fraction. (a) Simulation results for linear (squares) and 
ring (circles) polymers. (b) Analytical solution for 
bridging fractions. 

  Such local fluctuation of better solvent concentration can 
be taken into account by the modified adsorption model 
proposed by Mukherji. In this model, N interaction sites on 
polymer backbone are occupied by three types of solvent 
molecules, a bridged cosolvent, a cosolvent and a good 
solvent, which fractions are written as φB, φC, and 1-φB-φC, 
respectively. The free energy of solvent adsorption can be 
written by:9 

. 

(9) 

  

First three terms consider entropy for adsorption and next 
two terms includes interaction energy between cosolvents 
and polymers. Last term is for considering chemical 
potential of cosolvents calculated by μ=kTln(xc). E and EB 
are adsorption energies for non-bridged cosolvents and 
bridged cosolvents. Here, EB=2E-E loop where E loop is free 
energy penalty for making loop, and E loop=mln(1/φB). By 
minimizing Eqn. (9) with respect to φC and φB, relation 
between φΒ and xc can be obtained, such that: 

. 

, 

(10) 

  

where xc
*=exp(-E) and xc

**=exp(-EB). Figure 4(b) shows 
analytic solutions for above equation with ζ=2-m=0.05 and 

0.07. Small value of m indicates small free energy penalty 
for looping, in turn, resulting in the high bridging fraction in 
large xc. It shows a good agreement with our result that rings 
have higher looping probability than linear polymers, thus 
the bridging fraction remains higher at large xc. 

  Radial distribution function between a monomer and a 
better solvent, gmb(r), supports the fact that the collapsed 
structure is originated from the strong attraction between this 
pair. Figure 5 shows gmb(r) for linear and ring polymer 
systems, and both give very similar results. For xc=0.1, the 
first peak is very high, which means that the number of 
better solvents directly interacting with a polymer backbone 
is large. It is interesting to note that at this condition, better 
solvents are located not only in the first solvation shell but 
also in the region close to the polymer. In this context, it is 
again validated that the co-nonsolvency can not be 
understood by mean-field approach, but by the local density 
concentration of better solvents. Moreover, coil-to-globule 
transition by adding the small number of better solvents is 
energetically favored phenomenon. Therefore, we expect 
that large difference of attraction strengths between good 
solvent-monomer and better solvent-monomer leads to the 
co-nonsolvency behavior. It is shown that the peak height 
gradually decreases as well as the bridging fraction with 
increasing xc. In this case, energetic contribution can be 
maximized by increasing φC and decreasing φB, thus the 
fraction of directly solvating cosolvents diminishs. Figure 6 
shows pair distribution function between a monomer and a 
good solvent, gmg(r). The number of good solvents in the 
first solvation shell is anti-correlated with that of better 
solvents.  

(a) 

 

(b) 
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Figure 5. Radial distribution functions for monomer-
better solvent pair as a function of pair distance for (a) 
linear and (b) ring polymer systems of N=30. Different 
colors represent different better solvent concentrations.  

 

 

 

(a) 

 

(b) 

 

Figure 6. Radial distribution functions for monomer-
better solvent pair as a function of pair distance for (a) 
linear and (b) ring polymer systems of N=30. Different 
colors represent different better solvent concentrations.  

  According to reversible work theorem, radial distribution 
function is linked to the potential of mean force such that:21 

. (11) 

Considering radial distribution functions in Figs. 4 and 5, we 
can state that the effective potential between a monomer and 
solvents differs the solvent composition changes. In order to 
qualitatively observe the changes of effective potential 
between pairs, we calculate Kirkwood-Buff (KB) integrals. 
This integral is an indicator of affinity between two types of 
molecules, which is related to the excluded volume of a 
specific pair (Eqn. (5)), such that:22,23 

 
 

 

 
 

 

 
 

(12) 

 (a) 
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(b) 

 

Figure 7. Kirkwood-Buff integrals, Gij, between different 
solution compositions as a function of cosolvent molar 
fraction for (a) linear and (b) ring polymers of N l=30. Gij 
is calculated by integrating Mayer’s f-function in Eqn. (12) 

Figure 7 represents KB integral between a monomer and a 
better solvent, Gmb. It is noticeable that Gmb rapidly changes 
with increasing xc and has a maximum at xc=0.1. This 
reflects the excluded volume between this pair is smallest in 
this solvent composition and attraction between this pair is 
strongest in this condition. As the fraction of the cosolvent 
increases, Gmb gradually decreases as well as affinity of 
polymer-better solvent, which leads to re-opening of the 
polymer configuration. The small difference of bridging 
fractions between linear and ring polymers seems to be 
caused by the difference in Gmg at large xc. Effective 
interaction between a monomer and a good solvent for a ring 
at large xc is more repulsive than the linear counterpart. We 
can argue that relatively small number of backbone sites are 
available to be occupied by good solvents due to the ring 
already forms a loop. 

  According to the KB theory, the slope of μp with respect 
to cosolvent fraction is given by: 

. 
(13) 

By integrating Eqn. (13), we calculate a chemical potential 
of a polymer as a function of xc (Fig. 8). It should be noted 
that even if the polymer is collapsed in mixed solvents, it is 
well solvated by solvent molecules represented by negative 
chemical potential in all solvent compositions. This finding 
breaks the traditional picture of the relation between the 
solvent quality and the polymer conformation. This is also in 
good agreement with the analytical result, which can be 
calculated by differentiating Eqn. (9) with respect to xc, such 
that: 

. 
(14) 

Moreover, negative values of polymer chemical potentials in 
all solvent compositions indicate that the coil-globule-coil 
transition is totally controlled by a thermodynamic free 
energy. The coil-globule transition resembles the first-order 
thermodynamic phase transition in which the enthalpic 
stabilization by bridging structure is dominant. Reentrance 
from globule to coil structures is a continuous transition 
where the stabilization energy from the bridging structure is 
no longer advantageous and the polymer again follows SAW 
statistics.  

 

Figure 8. Chemical potential of a single monomer as a 
function of cosolvent mole fraction xc for linear (squares) 
and ring (circles) polymers. 

Conclusion 
 

  In this work, we performed Monte Carlo simulations to 
understand physical origin of the coil-globule-coil transition 
of linear and ring polymer solutions. Our simulation results 
reveal that the co-nonsolvency is originated from the local 
affinity between a polymer and a cosolvent, which makes a 
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bridging structure. Modified adsorption model considers the 
local density fluctuation of solvent molecules to explain the 
simulation results. Using this theory, we find that the coil-
globule-coil transition is a thermodynamic transition 
controlled by thermodynamic free energy. We also show 
that rings have higher looping probability than linear 
polymers, thus the bridging fraction remains higher at large 
xc. The ring polymer has smaller free energy penalty for 
looping than linear polymer, and the adsorption theory 
succesfully describes the high bridging fraction for rings. 
From this work, we provide generic understanding of 
polymer solution system for ring and linear polymer. 
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