The agricultural production forecasting method in protected horticulture using artificial neural networks

인공신경망을 이용한 시설원예 농산물 생산량 예측 방안

  • Published : 2016.10.27

Abstract

The level of domestic greenhouse complex environmental control technology is a hardware-oriented automation steps that mechanically control the environments of greenhouse, such as temperature, humidity and $CO_2$ through the technology of cultivation and consulting experts. This automation brings simple effects such as labor saving. However, in order to substantially improve the output and quality of agricultural products, it is essential to track the growth and physiological condition of the plant and accordingly control the environments of greenhouse through a software-based complex environmental control technology for controlling the optimum environment in real time. Therefore, this paper is a part of general methods on the greenhouse complex environmental control technology. and presents a horticulture production forecasting methods using artificial neural networks through the analysis of big data systems of smart farm performed in our country and artificial neural network technology trends.

국내 온실용 복합환경제어 기술은 온도, 습도 및 $CO_2$ 등의 환경을 작물재배 기술 및 전문가의 자문을 통하여 환경을 설정하여 하드웨어를 기계적으로 조작하는 단계이다. 이러한 자동화는 노동력 절감 등의 단순효과는 있으나, 실질적인 생산량 증대 및 품질을 개선하기 위하여 식물의 생육, 생리상태를 실시간으로 추적하고 그에 맞게 실시간으로 최적 환경을 제어하는 소프트웨어 기반의 복합환경제어 기술이 필요하다. 따라서 본고는 이러한 복합환경제어기술의 방안제시의 일환으로 국내에서 수행중인 스마트팜 빅데이터 분석 체계와 인공신경망 기술동향을 분석하고, 이를 기반으로 인공신경망을 이용한 시설원예 생산량 예측 방안을 제시하고자 한다.

Keywords