Abstract
We present preliminary results of the submillimeter continuum observations of 14 Planck Galactic Cold Clumps (PGCCs), located in the ${\lambda}$ Orionis Complex. This region is the nearest large HII region, which is an ideal site for a study of the stellar feedback to its surroundings. We observed 14 PGCCs with JCMT/SCUBA-2 and used J=1-0 transitions of CO isotopologues from the PMO mapping observation. Several sub-clumps toward three PGCCs were detected at $850{\mu}m$. In order to examine whether these clumps can be candidates for pre-stellar cores, we compared each clump mass calculated from the $850{\mu}m$ continuum map to its Virial mass and Jeans mass calculated from the $^{12}CO$ and $C^{18}O$ (1-0) spectra, respectively. All clumps have masses smaller than their Virial and Jeans masses, indicating that none of them are gravitational bound and thus in the pre-stellar core stage. Also, the CO depletion factor, which has been derived from the dust continuum and the $C^{18}O$(1-0) line and can be an indicator of core evolution, toward the clumps is in the range of 1 to 5, suggesting that they are not very evolved dense pre-stellar cores. In addition, within individual PGCCs, we found clear gradients of velocity (${\sim}1km\;s^{-1}\;pc^{-1}$) and temperature (${\sim}10K\;pc^{-1}$) in the $^{13}CO$ (1-0) first moment map and the $^{12}CO$(1-0) excitation temperature map, respectively. This can be attributed to the compression and external heating by the HII region, which may prevent clumps from forming gravitationally bound structures and eventually disperse clumps. These results could be a hint about the negative effect of stellar feedback on core formation.