KVN Performance Evaluation of Simultaneous 4CH Observations

  • Published : 2016.04.12

Abstract

It is important to know how well observation errors are removed in the calibration process prior to ensuing scientific research. In mm-VLBI observations, a radio wave suffers from an atmospheric propagation delay due to the rapid change of atmospheric refraction. It makes phases of VLBI correlation output fluctuate rapidly, which essentially decreases the coherence of phases and reduces the integration time. Consequently, it is challenging to achieve a high signal-to-noise ratio and enhance the quality of scientific output. Among the causes of the atmospheric propagation delay, water vapor in the troposphere is the most decisive factor to affect phase errors in the high frequency range (> 10GHz). It is expected to have the non-dispersive characteristic that enables to introduce new calibration strategy, Frequency Phase Transfer (FPT). This new method utilizes low frequency phases to compensate phase errors in high frequency bands. In addition, Korean VLBI Network (KVN) which benefits from the simultaneous 4-channels (22/43/86/129 GHz) observations is ideal to probe FPT performance. In order to evaluate FPT performance of KVN, we present the results of FPT phase analysis and discuss its performance.

Keywords