원자력발전소 2차계통 열성능시험을 통한 터빈출력 개선 연구

강경훈¹, 이경진^{2*}

1한수원㈜ 한빛본부, 전라남도 영광군 홍농읍 홍농로 846 ²조선대학교, 광주광역시 동구 필문대로 309번지 kangkyunghun@khnp.co.kr

1. 서론

H 원자력발전소 5호기 5차 계획예방정비 이후 100%원자로 열출력에서의 발전단 전기 출력 및 터빈 사이클 열소비율 진단을 통해 인수성능시험 대비 열성능 변화 추이을 분석하고 2차계통 주요 설비별 성능 분석을 통해 향후 효율적인 발전소 설 비 운영 및 성능 이력관리를 위한 기준 성능지표 (Baseline Performance)를 확보하여 설비의 최적운 영을 위한 계통분석과 방법을 제시하고 발전소 이용 률 향상에 기여하고자 본 연구를 시작하게 되었다.

2. 2차계통 정밀 열성능 진단 시험

2.1 2차계통 정밀 열성능 진단 개요

2.1.1 성능진단 항목

2차계통 정밀 열성능 진단시험 항목으로 100% 원자로 열출력 및 정격 증기조건에서 발전단 전기 출력 및 터빈 사이클 열소비율 진단, 터빈사이클 Heat Balance 분석을 통한 2차계통 주요설비별(터 빈, MSR, 급수가열기, 복수기 등) 성능분석 및 기 준 성능지표 확보, 발전소 주요 성능변수에 대한 PMS 데이터 대비 성능 진단용 특설 계측기 데이 터 비교 분석, 2차계통 내 밸브누설 등에 의한 에 너지 손실 요인 점검을 수행하였다.

2.1.2 특설계측기 설치 및 데이터 취득

본 진단시험을 위해 특설된 모든 계측기는 현장 데이터 전송장치(Data Acquisition System)로부터 10 초 간격으로 데이터를 취득하여 PC 전자파일로 저장되었고 전산실 서버로 저장되는 발전소 운전용 데이터는 1 분 간격으로 취득하였다. 정확한 전기 출력 측정을 위해 <Fig. 1>과 같이 Wye Generator 3 Phase, 4 Wire 방법을 이용한 회로결선을 사용 하였다.

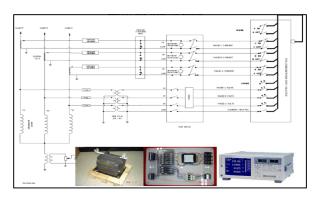


Fig. 1. Generator Power Measuring Instrument Wiring Diagram.

2.1.3 성능시험조건

원자로 감시장치(NIS) 츨력영역 지시계는 진단시 험전에 교정을 완료하고, 진단시험 중 전기 출력은 <Fig. 2>와 같이 100% 안정된 상태로 유지하였다. 증기터빈의 경우 동일한 Governing 밸브 개도 기 준으로 수행되어야 하나 원자력발전소 운전특성을 고려하여 유사한 밸브개도를 유지하였다. 발전소 운전상태가 시험 결과에 영향을 미치지 않도록 발 전소 설비들이 정상상태에서 열적평형상태가 유지 되었으며 주요성능변수는 시험결과에 대해 보정을 최소화 할 수 있도록 가능한 시험조건에 가깝게 운 전되었다.

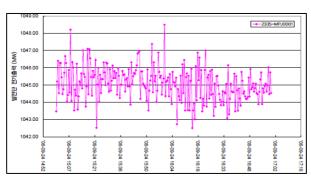


Fig. 2. Test Condition (100% Turbin Power).

2.2 성능진단 결과 분석

2.2.1 발전단 전기출력 및 터빈사이클 열소비율 분석 H 원자력발전소 5호기 2차계통 정밀 열성능 진단은 원자로 열출력 평균 100.44%에서 진행되었으며 진단시험기간 중 측정된 전기출력은 1,045,609 kW이다. 측정된 시험조건 발전단 전기출력을 100% 원자로 열출력, 설계기준 터빈 입구 주증기 압력 (72.768 kg/c㎡), 발전기 역률(0.9) 및 복수기 진공도 (38.1 mmHg)등으로 보정한 정격조건 발전단 전기출력은 1,043.517 kW로 2002년 인수성능 대비 4,290 kW 저하 되었다.

2.2.2 인수성능대비 발전단 전기출력 저하 원인분석 본 성능진단 프로그램에서 측정된 고압터빈 첫단출구 증기 압력은 평균 54.939 kg/cm으로 인수성능시험 결과 55.18 kg/cm대비 0.437% 감소한 반면측정된 주급수 유량은 0.061% 감소하였다. 동일조건에서 Heat Balance 시뮬레이션을 통해 분석한 주급수 유량 증가는 약 0.411%이며 이를 통해성능진단 기간중 주급수 유량이 과다하다 측정되고있었음을 간접적으로 확인 할 수 있다. <Fig. 3>과같이 H 원자력발전소 5호기 인수성능대비 발전단전기출력 저하 4,330 kW중 BOP계통(580 kW) 및 MSR 'B'(50 kW)성능저하에 따른 영향을 제외한 나머지 3,000 kW를 벤츄리 노즐에 발생한 파울링에기인한 것으로 데이터 분석결과로 알수 있었다.

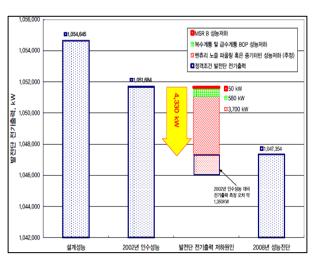


Fig. 3. Turbin Power analysis Result.

2.3 점검 및 개선 방안

2.3.1 주급수 유량 측정 신뢰성 개선 증기발생기 B 입구측에 설치된 주급수 벤츄리 노즐 유량계 중 FE1122 'Y' TAP SET은 ASME 19.5CODE의 요구조건을 만족하지 못하고 'X' TAP SET과 과다한 유량편차로 인해 주급수유량 측정용으로 부적합하여 설비 개선을 통해 설비신뢰성을 확보 할수 있을 것으로 보인다.

2.3.2 파울링 방지를 위한 2차계통 수질 개선

H 원자력발전소 5호기 벤츄리 노즐 파울링에 의한 유량계수 변화 메커니즘 및 유량측정오차는 벤츄리 노즐 내부 표면 조도 증가에 따른 경계층 두께 증가 및 탭 주위 이물질 침적에 압력 탭 오류가 동시에 유량 계수 변화에 영향을 준 것으로 판단된다. 계획예방정비 기간 중 벤츄리 노즐 탭 부위 세정을 통해 침적된 이물질을 제거하고 있으나한 주기 도래 이전에 재 침적이 발생하여 원자로열출력 과다 지시 및 발전단 전기 출력저하를 초래하고 있다. 따라서 2차 계통내 이물질 생성원인 및 제거방안이 우선적으로 검토되어야 할 것 으로 보인다.

3. 결론

성능진단 결과 보정된 정격조건 발전단 전기출력은 1,047,345 kW로 인수성능대비 4,300 kW 저하된 것으로 분석되었으며, 성능저하의 주요요인은 MSR 및 급수계통/복수계통 BOP 성능저하와 벤츄리 노즐 파울링으로 분석되었다. 파울링 방지를 위해 주 급수 유량 측정계 개선과 2차계통 수질 개선을 통해 전기출력 저하문제를 해결 방안을 도출하였다. 또한, 2차계통 주요 설비별 성능 분석을 통해 설비별 성능이력 관리를 위한 기준 성능지표를 확보하였다.

4. 참고문헌

- [1] "Turbin Cycle Performance Diagnostic Test Report" : EN-P-RPT-007, Enesco(2009).
- [2] 한빛3발전소 OM Manual.
- [3] 한빛3발전소 System Manual.
- [4] ASME PTC 6.0 : Steam Turbines.
- [5] ASME PTC 12.1: Closed Feed Water Heaters.
- [6] ASME PTC 12.4: Moisture SeparatorReheaters.
- [7] ASME PTC 19.5 : Flow Measurement.