조붕비¹, 정원섭¹, 안석영^{1*} 부산대학교 제염해체핵심기술연구센터, 부산광역시 금정구 부산대학로 63번길 2 ^{*}sahn@pusan.ac.kr

1. 서론

설계수명이 종료되었거나 원전정책의 변경, 사고 등 의 이유로 해체되는 원전에서는 다량의 방사성 금속 폐기물이 발생한다. 국내특성상 노후 원전 해체시 방 사성 폐기물의 부피를 최소화하는 것이 해체비용절감 에 중요한 요소로 작용한다. 방사성 금속 폐기물의 경 우, 부피감용 및 핵종의 균질분포가 가능한 용융제염 방식이 현재 해체 선진국 등에서 사용되어 지고 있다. 원전해체 과정에서 발생하는 방사성금속폐기물들은 Co-58, Co-60, Cs-137, Mn-54, Cr-51, Fe-55, Fe-59, Zr-95, Ni-63등의 주요 핵종을 함유하고 있으며 Co-58 및 Co-60의 특성상 분리가 용이 하지 않으며 용융제염시 해당 핵종의 제염도를 향상시키려는 연구 가 계속 진행 중에 있다. 2007년 한국원자력연구원의 아크로를 이용한 용융제염에 관련 실험결과는 Co-60 의 95%이상이 주괴에 잔존하는 것으로 조사되었다[1]. 2013년 독일 CARLA Siempelkamp는 개발된 유도가 열 용융로가 약 11%의 Co-60를 슬래그상으로 이동하 여 제염이 가능함을 시연하였다[2]. 그 외에도 1994 년 미국의 Capenhurst, 1992년 DURATEK (SEG), 1999년 프랑스 CENTRACO, 1992년 프랑스 INFANTE, 등에서 금속용융제염 관련 연구가 수행되 어졌다. Co-60 및 Co-58의 제염도를 향상시키려는 연 구는 현재 진행형이다[1].

본 연구에서 기존 유도가열 용융장비를 개선하여 다 양한 슬래그 조성 및 실험 조건에 대해서 SUS304의 Co핵종 분리 및 그에 영향을 미치는 요인들에 대해서 연구를 수행하였다.

2. 본론

2.1 용융제염에 대한 이해

2.1.1 용융제염 기술

용융제염이란 금속 용융 시 금속 상에 있는 방 사성핵종을 첨가되는 슬래그상으로 이동시키거나 휘발성인 핵종의 경우 필터에서 포집하는 과정이 다. 방사성 핵종은 일반적으로 산화물의 형태로 슬 래그상에 포집이 가능하다. Co-58, Co-60일 경우 는 Co의 산화물형태인 Co₂O₃나 CoO₂로 변환되는 과정이며 산소는 슬래그내의 산소나 공기 중의 산 소가 공급원이 된다. 따라서 용융 시 직접 산소를 공급하거나 슬래그상에 산소원소를 공급해주는 2 가지 방법이 가능하며, 본 연구는 유도가열을 이용 하여 개방된 상태에서 정량적 슬래그를 투입하여 실험을 하였다.

2.1.2 용융제염의 원리

슬래그를 이용한 방사성 폐기물금속 용융제염의 기 조 및 원리는 아래와 같이 4단계로 정리할 수 있다.

- 용융 시 용융금속 내에 있는 방사성 핵종은 공기 중에 있는 산소랑 결합하여 또는 슬래그를 투입 시 슬래그 중에 있는 산소랑 결합하여 방사성 핵 종의 산화물이 형성된다.
- 방사성 핵종산화물은 자체의 확산, 비중, 활동도 차 이에 따라 슬래그랑 접촉하면서 슬래그상으로 이동 한다. 따라서 용융 시 교반이 잘 될수록 용융금속 및 슬래그 사이의 접촉은 증가하여 슬래그상으로 더 많은 핵종이 이동하여 산화물을 형성하게 된다.
- 슬래그상으로 이동된 방사성 핵종산화물은 슬래그의 성분에 의하여 안정화 되거나 다시 용융금속으로 이동하게 된다. 그러므로 슬래그의 조성 및 량은 핵 종산화물을 안정화 키시는데 중요한 역할은 한다.
- 휘발성 방사성 핵종은 배기체 방식으로 방출되어 필터를 사용하여 이러한 배기체를 포집가능하다[2].

2.2 실험 방법 및 결과

2.2.1 실험 장비

본 실험에서 사용하는 유도가열 장비의 개략도는 Fig. 1과 같다.

본 유도가열 장비의 최대 파워출력은 20 kw이며 용탕 용량은 0.1~1 kg이다. 그리고 실험 시 사용하 는 흑연 도가니의 순도는 99%이상이며 사이즈는 내경 7 cm, 높이는 10 cm이다. 사용한 시편은 SUS304봉이며 반경은 2 cm, 높이는 3 cm, 개당 무개는 약 300 g이다. 이러한 SUS304봉의 표면에 Co를 도금하여 Co-58 및 Co-60을 함유한 방사성 금속으로 모사 실험을 수행하였다.

Fig. 1. Schematic of the induction furnace for melting decontamination.

2.2.2 실험 방법

실험의 변수는 염기도, 용융시간, 용융온도, 슬래 그조성이 있으며 각각 변화 시켜서 실험을 수행하였 고 실험 데이터는 Table 1, Table 2 에 정리하였다.

Table	1.	Composition	of	the	slags	used	for	experiment
		1			0			1

번호	슬래그 무게 용융전/ 용융후(g)	2	클래그 조성	(%)	염기 도	용융 시간 (s)
1	30/29.72	SiO2(10)	CaO(60)	Al2O3(30)	2.23	1800
2	30/24.37	SiO2(50)	CaO(30)	Al2O3(20)	0,52	1800
3	30/27.55	SiO2(10)	CaO(60)	Al2O3(30)	2.32	3600
4	30/25.24	SiO2(30)	CaO(40)	Al2O3(10) Fe2O83(20)	-	1800
5-1	30/26.38	SiO2(20)	CaO(50)	Al2O3(20) CaF2(10)	-	1800
5-2	30/25.77	CaO(40)	Al2O3(10)	CaF2(50)		1800
6	30/19.8	SiO2(75)	CaO(25)			1800
7	30/29.25	SiO2(30)	CaO(50)	Al2O3(10) Fe2O3(5) CaF2(5)	-	1800

Table 2. Co content changes after using different slag compositions

번호	시편무게 용융전/용융후(g)	Co무게 (g)	Co함량 (%)	도가니무게 용융전/용융후(g)	제거율 (%)
1	299.73/322.19	0.70	0.23	600.71/579.13	1.02
2	299.68/320.26	0,71	0.24	605.72/584.98	4.10
3	299.70/319.31	0.69	0.23	602.79/579.79	0.49
4	299.76/321.93	0.71	0.24	601.79/581.56	2.35
5-1	299.49/-	0.49	0.16	607.38/-	0.45
5-2	-/319.83	-	-	-/570.91	0.18
6	299.68/317.20	0.67	0.25	605.70/578.07	1.40
7	299.80/314.82	0.72	0.24	609.58/580.33	0.31

2.2.3 실험 결과

슬래그상으로 이동한 Co량은 XRF를 이용하여 측정하였다. 실험 결과, 염기도가 0.52이며 슬래그 조성은 SiO₂(50%)-CaO(30%)-Al₂O₃(20%)일 때 Co

372 | 2016 한국방사성폐기물학회 춘계학술대회 논문요약집

에 대한 제거율은 4.1%이며 가장 높은 결과로 얻 었다. 기본 슬래그에 CaF₂를 추가하였을 때 슬래그 의 유동성은 증가하지만 최종 Co의 제거에 대하여 큰 영향을 미치지 않는 것으로 판단된다. 5-1, 5-2 의 반복 용융 실험의 효과 확인은 재용융의 효과가 크게 없는 것으로 판단된다.

3. 결론

- 유도가열을 이용하여 Co에 대한 용융제염 실험 을 수행한 결과, 예상보다 낮은 Co 제거율을 보 였다. 그 원인을 아래와 같이 설명 가능하다. 1) 본 실험에 사용하는 유도가열 장비의 특성상 Co 의 완전 용융 여부의 확인이 필요하다. 2) Co 산 화물의 형성과정에서 필요한 산소가 충분히 공급 되는지 확인이 필요하다. 3) CaO, SiO₂, Al₂O₃의 경우, 열역학적 안전성이 Co₂O₃의 안전성 보다 높아서 Co산화물을 형성하기 어렵다. 4) 슬래그 및 용융금속 사이의 계면적이 작아서 Co와의 화 학 반응이 충분히 일어나지 못 하였다. 5) 용융 과정에서 Co산화불로 형성되더라도 다시 산소랑 분리되어서 Co금속상태로 되돌아 갈 가능성이 있다.
- 이번 실험결과, 충분한 제염 성능을 확보하지는 못하였지만 장비 개선 및 실험방안을 개선하여 용융 시 대량의 산소를 인위적으로 공급하여 Co 를 산화물로 반응시킬 수 있는 확률을 높이는 장 치를 설치하여 추가실험 데이터를 확보하고 있는 중이다.

4. 감사의 글

본 연구는 한국연구재단의 지원 (No. NRF-2012M2B2B1055503)과 방사선안전재단 (No. 1305009-0113-HD130)으로 수행되었습니다.

5. 참고문헌

- Byeong-Yeon Min, Distribution Characteristics of Radionuclies (60Co, 137Cs) During the Melting of Radioactive Metal Waste, 2007.
- [2] Byeong-Yeon Min, Current Status and Future Issues for Melt Decontamination of Decommissioning Metal Wastes Generated from Nuclear Facilities, 2012.