중·저준위 방사성폐기물 중 EDTA 불확도 산출

최광순* 오심온, 임희정, 안홍주 한국원자력연구원, 대전광역시 유성구 대덕대로 989번길 111 *nkschoi@kaeri.re.kr

1. 서론

한국원자력환경공단(KORAD)은 중·저준위 방사성 폐기물 처분장을 경주시 양북면 봉길리에 2015년 에 준공하여 현재 가동 중에 있다. KORAD은 한국 원자력연구원, 고리, 울진 및 영광 원자력발전소에 서 임시로 보관 중인 중·저준위 방사성폐기물 드럼 을 인수받아 보관 및 관리하게 된다. KORAD은 중·저준위 방사성폐기물 드럼을 인수할 때 원안위 고시 제2015-004호 '중ㆍ저준위 방사성폐기물 인 도규정' 규정을 준수하여야 한다. 이 규정에 킬레 이트 함량이 0.1% 이상 함유된 폐기물은 명시하도 록 규정하고 있다.

방사성핵종과 킬레이트가 공존하여 물과 접촉하 면 킬레이트와 방사성핵종이 착화합물을 형성하여 방사성핵종의 이동성이 증가하기 때문에 킬레이트 함량을 규제하고 있다. 킬레이트는 두 개 또는 그 이상의 배위자가 고리를 형성하여 금속과 만든 화 합물을 의미한다. 킬레이트 시약은 EDTA, CyDTA, 구연산 및 NTA와 같이 많은 종류가 있다. EDTA는 원자력발전소에서 가장 많이 사용한 킬레이트제로 알려져 있다.

ZrO²⁺과 xylene orange가 공존하면 ZrO²⁺과 xylene orange가 착화합물을 형성하며, ZrO²⁺과 EDTA의 착물상수가 ZrO²⁺과 xylene orange 착물 상수보다 크므로 EDTA가 ZrO²⁺과 xylene orange 함께 공존하면 ZrO²⁺-xylene orange는 ZrO²⁺ -EDTA로 치환된다. 550 nm에서 ZrO²⁺-EDTA 투 과도는 EDTA 농도가 증가할수록 투과도도 증가하 므로 EDTA 농도변화에 따른 투과도를 측정하여 검정선을 작성하면 EDTA 농도를 측정할 수 있다.

본 연구는 잡고체 제염지 중의 EDTA 함량을 UV-VIS로 측정할 때 불확도를 산출하고자 하였다 [1]. 불확도 인자는 시료 무게, 침출용액 부피, 용 액 희석 그리고 UV-VIS로 EDTA 농도를 측정할 때 와 같이 크게 4개 성분을 고려하였다.

2. 본론

2.1 실험

EDTA 함량을 측정하기 위하여 증류수와 시료 일정 양을 비커에 넣고 초음파세척기로 침출하였 다. 침출용액을 일정한 부피로 맞추고 일정한 양을 취하여 25 mL 부피 플라스크로 옮기고 ZrO²⁺과 xylene orange를 가하고 증류수로 눈금까지 맞추 었다. EDTA 농도변화에 따른 투과도를 측정하여 검정선을 작성한 다음 EDTA 농도를 측정하였다.

시료 무게를 측정할 때 A형 불확도를 산출하기 위하여 시료 일정 양을 10회 반복하여 표준편차를 구하였다. 침출한 용액을 일정한 부피로 맞출 때 A 형 불확도를 산출하기 위하여 100 mL 부피 플라 스크에 증류수로 눈금까지 채우고 무게를 측정하는 과정을 10회 반복하여 표준편차를 구하였다. 용액 을 희석할 때 A형 불확도를 산출하기 위하여 마이 크로 피펫과 25 mL 부피 플라스크로 희석할 경우 증류수로 무게를 측정하는 과정을 10회 반복하여 각각의 표준편차를 구하였다. UV-VIS로 EDTA 농 도에 따른 투과도를 최소자승법으로 검정선을 작성 하고 이 검정선을 기준으로 EDTA 농도를 측정할 때 불확도를 산출하였다.

2.2 결과 및 논의

시료 중 EDTA 함량은 다음 식으로부터 계산할 수 있다.

$$Na_2EDTA(\%) = C_0x\frac{V}{W}xDx\frac{1}{10^6}x100$$

앞의 식에서

C。: 희석 용액 중 Na₂EDTA 농도 (mg/L)

V : 시료 침출 후 부피 (mL)

W: 시료 무게 (g)

D: 시료 침출 후 희석배수

EDTA 농도변화에 따른 투과도(T)를 측정한 다음 log T vs EDTA 농도를 최소자승법으로 검정선을 작성하였다.

$$log T_i = C_i \cdot B_1 + B_0$$

앞의 식에서

 T_i : i 번째 검정표준용액의 투과도 C_i : i 번째 검정표준용액의 EDTA 농도

B₁ : 검정선의 기울기 B₀ : 검정선의 절편

앞의 식을 기준으로 희석 용액 중의 EDTA 농도를 측정하였을 때 표준불확도 $\{u(C_0)\}$ 는 다음 식으로 구한다.

$$\text{u(C}_0) = \frac{s}{B_1} \sqrt{\frac{1}{p} + \frac{1}{n} + \frac{(C_0 - C_x)^2}{S_{xx}}}$$

$$S_{xx} = \sum_{i=1}^{n} (C_i - C_x)^2$$

앞의 식에서

u(C₀) : 표준불확도 s : 잔여치의 표준편차 B₁ : 검정선의 기울기

p : 침출용액의 EDTA 농도 측정회수

n : 검정선 작성을 위한 표준용액 측정회수

Co: 측정한 EDTA 농도

Cx: n회 측정한 EDTA 표준용액의 농도평균

C_i: i 번째 EDTA 표준용액의 농도

i: 검정선 작성을 위한 검정표준용액 측정순서

시료 침출 후 일정부피로 채울 때 불확도는 2 개 성분을 고려하였다. 100 mL 부피 플라스크에 채울 때 10회 반복하여 측정한 표준편차는 0.02 mL이었다. 제조회사가 제공한 100 mL 부피 플라스크의 표준불확도는 0.08 mL이므로 삼각형 분포를 적용하여 $0.08/\sqrt{6}=0.033$ mL이었다. 이 두 표준불확도를 합성하면 $u(V)=\sqrt{0.02^2+0.033^2}=0.039$ mL이었다.

무게를 측정할 때 불확도 인자는 재현성과 선형성을 고려하였다. 우연오차에 대한 저울 제조회사의 규격에 따르면 $50\sim200$ g 범위의 무게측정에서 표준편차는 0.04 mg이다. 사용한 저울의 검교정성적서에 의하면 95% 신뢰도에서 ±0.1 mg이므로 표준편차는 0.1/1.95=0.052 mg이며, 시료 무게는두 번 측정한 차이에 해당되므로 이 표준불확도는두 번 고려하였다. 즉 $u(W)=\sqrt{0.04^2+2x0.052^2}=0.084$ mg이었다.

5 mL 마이크로 피펫과 25 mL 부피 플라스크를

사용하여 5배 희석할 때 불확도는 A형과 B형 불확도를 고려하여 계산하면 $u(D_5) = 5 \times 0.0018 = 0.009$ 이다.

Table 1에 시료를 침출하여 희석한 용액에서 EDTA 농도를 측정할 때 불확도 성분에 대한 합성 표준불확도를 요약하여 나타내었다. 합성표준불확도는 u_c (EDTA) = EDTA x 0.0291 = 0.1181% x 0.0291 = 0.00344%이었다. 확장불확도 U(EDTA)는 합성표준불확도에 95% 신뢰도일 때 확장계수 2를 곱하여 얻었다. 2 x 0.0344% = 0.0069%. 측정결 과는 95% 신뢰도일 때 확장불확도가 0.0069%이므로 다음과 같이 표현하였다.

EDTA 함량: 0.1181±0.0069% (신뢰도 95%)

Table 1. Summary of combined uncertainty

값	표준 불확도	상대표준 불확도
9.499	0.274	0.029
100	0.039	0.00039
4.02	0.000084	0.000021
5	0.009	0.0018
	9.499 100 4.02	값 물확도 9.499 0.274 100 0.039 4.02 0.000084

3. 결론

중·저준위 방사성폐기물 중에서 제염지가 함유하고 있는 EDTA 함량을 측정할 때 불확도를 산출하였다. 불확도 인자는 무게 측정, 부피 맞춤, 희석 및 UV-VIS 측정과 같은 성분을 고려하였다. 불확도 성분 중에서 검정선으로부터 측정한 EDTA 농도값이 불확도에 가장 크게 기여하였다. 또한 불확도를 최소로 하기 위하여 시료 중의 EDTA 농도가표준용액의 가운데 오도록 희석하는 것이 좋다.

4. 감사의 글

본 연구는 미래창조과학부의 출연금 주요사업의 일환으로 수행하였음.

5. 참고문헌

[1] 화학분석 불확도 계산방법, 서무열 외 6인, KAERI/TR-1602/2000.