폐기물인증프로그램에 대한 공정상 물질수지 적용 고찰

홍용호*, 박형민, 최은석 ㈜액트, 대전광역시 유성구 테크노 9로 35 IT전용 벤처타운 406호 *hyh@actbest.com

1. 서론

방사성폐기물 발생자(이하 발생자라 한다.)가 방 사성폐기물을 처분장에 인도하기 위해서는 원자력 안전위원회 고시(인도규정)와 한국원자력환경공단 의 처분장 인수기준(WAC; Waste Acceptance Criteria) 23개 항목에 적합하게 처리 및 포장하여 야 하며, 방사성폐기물이 처분요건에 적합함을 입 증해야 한다. 한편 발생자는 처분장 인수기준 23개 항목 중 8개 항목인 처분제한물질의 관리를 위해 원자력발전소에서는 관리절차(방사선관리구역 유해 물질 등의 관리절차서)에 따라 관리하고 있으나 처 분장 인수기준 만족을 위한 관리측면에서 부족한 게 사실이다. 더욱 처분제한물질은 드물게 또는 적 게 발생하고 있으나 지금까지 별도 발생원별 처분 제한물질의 물질수지에 대한 관리가 없어 최종 폐 기물 포장용기 파괴검사를 통해 발생자가 인수기준 만족여부를 입증하기위해 다소 많은 시간과 비용이 소요 되었다. 따라서 본 논문에서는 폐기물인증프 로그램(WCP; Waste Certification Program) 처분적합 성 검사에 소요되는 인적 및 물적 비용을 절감하고 부적합 폐기물 발생을 원천적으로 차단하기 위해 처분제한물질에 한정하여 폐기물 처리공정에 물질 수지(Material balance) 적용 방안을 원자력발전소를 대상으로 고찰하고자 한다.

2. 본론

2.1 폐기물 처리공정에 따른 스트림 분류

폐기물 스트림(stream)은 폐기물처리를 위한 동일 한 시설 및 공정에서 발생하고 물리.화학적 특성이 유사하며 동일 폐기물 Lot로 관리되는 폐기물로써 발생원별로 스트림을 잡고체, 농축폐액, 폐필터 및 폐수지로 분류한다.

2.2 발생자의 스트림별 처리 현황

잡고체는 크게 가연성 및 비가연성으로 대분류하 고 세분류하여 분류기준에 따라 분류하고 있다. 농축폐액의 경우 1995년부터 농축폐액 건조설비

도입을 통해 파라핀 고화방법을 채택하여오다 파라 핀 고화체의 층분리 현상으로 인한 고화요건의 불 만족사항으로 인한 처분 적합성을 만족시키지 못하 여 현재에는 건조분말 형태로 각 발생 발전소에 보 관중이다.

폐필터의 처리공정을 분석한 결과에 의하면 1차 측 수질정화용 필터는 장기저장탱크에 보관하여 방 사선/능 준위를 감쇄시킨 후 고형화처리를 한다고 기술되어 있지만 현재 모든 발전소가 장기저장랙 또는 임시저장고와 차폐체 내에 보관하고 있고 고 형화 실적은 없다.

폐수지의 경우 1995년부터 월성본부를 제외한 본 부당 1대씩 도입하여 폐수지 건조설비(Spent Resin Drying System)를 통해 건조처리 후 폴리에틸렌 고 건전성용기(PE HIC)에 보관하여 왔다. 신규건설 원 전인 신고리 1, 2발전소와 월성3발전소가 2012년도 부터 폴리머고화방법을 채택하여 운영 중이며, 현재 인허가가 추진 중인 폴리머콘크리트 고건전성용기 (PC HIC)가 사용될 예정이다. 월성본부의 경우 폐수 지 발생분 전량을 대용량 저장지역(Vault)에 보관하 고 있으며 아직 드럼발생실적은 없다.

2.3 폐기물처리 공정상 물질수지 적용

발생자가 처분장 인수기준 23개 항목 중 8개 항목 인 처분제한물질(Table 1의 ⑩번에서 ②번까지)의 관리를 위해 폐기물의 발생원부터 드럼포장까지의 공정상 처분제한물질의 공정 단위별 유입된 물질, 유출된 물질, 축적된 물질 및 소멸된 물질 전반에

Table 1. Waste acceptance criteria

포장물 검사 WAC 23개 항목	
① 포장물 조건	③ 입자성물질
② 폐기물 형태	④ 채울률
③ 폐기물 내용물	⑮ 유리수
④ 중량	⑯ 킬레이트제 등
⑤ 포장물 단위크기	① 발화성물질
⑥ 고화체 구조적 건전성	⑩ 유해성물질
⑦ 고정화	⑩ 폭발성물질
⑧ 방사능농도	② 부식성물질
⑨ 핵종규명	② 기체발생
⑩ 표면 방사선량률	② 인화성물질
⑪ 임계안전	② 생물, 병원균 및
⑫ 표면오염도	감염물질

관한 정보를 확인(수집)하여 폐기물 발생 시점부터 관리할 수 있도록 처분제한물질에 대한 제거 또는 감소 여부를 확인할 수 있는 물질수지 개념이 도입 된 공정흐름도를 Fig. 1과 같이 나타내었다.

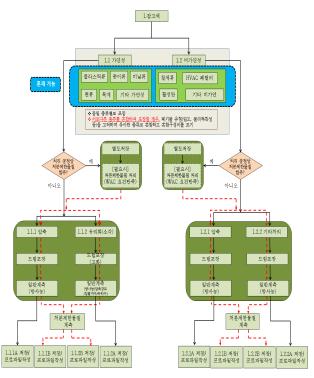


Fig. 1. solid wastes treatment process.

이를 통하여 폐기물 스트림 중 잡고체에 대한 처분제한물질의 유입여부를 확인할 수 있는 공정상 의 물질수지 확인지점을 공정흐름도에서 확인할 수 있다. 결국, 공정상의 물질수지확인 방법은 드럼발 생이후 처분제한물질 유입여부를 확인하기 위하여 재 측정하는 업무의 중복성을 배제할 수 있다.

유해물질이 미 포함된 경우에는 기존의 처리공정 흐름도에 따라 폐기물을 처리하면 된다. 하지만 처 분제한물질이 포함된 경우에는 별도저장 및 별도처 리 과정을 거치도록 하였으며, 이렇게 함으로써 처 분제한물질의 유입여부를 재확인하는 업무의 중복 성을 배제하고 물질수지 확인에 따라 처분제한물질 이 포함된 경우로 확인된 폐기물을 별도저장 및 처 리할 수 있는 근거를 마련할 수 있다.

더불어 발생자가 처분될 폐기물 스트림에 대하여 폐기물 형태와 특성 자료를 기술한 정보파일 양식 인 Fig. 2의 방사성폐기물 프로파일 양식 중 점선 부분에서 폐기물 스트림의 처리(공정)을 명확히 하 고 물질수지 확인 결과에 따라 처리(공정)을 구분 할 수 있도록 하였다.

방사성폐기물 프로파일	
■ 일반정보	
1. 발생 원전본부 : 2. 발생 발전소 :	
3. 인증책임자 성명 :	
1) E-mail : 2) 전화 : 3) Fax :	
■ 폐기물 정보	
1. LOT No	
2. 폐기물 종류	
□ 중준위폐기물(00.W) □ 서준위폐기물(LLW) □ 극서준위폐기물(VILW)	
[3, 폐기물 즈트림	
□ <u>1. 잡고체</u>	
□ 1.1 가연성	
□ 1.1.1 압축	
□ 1.1.1A 처분제한물질 미향유 □ 1.1.1B 처분제한물질 향유	
□ 1.1.2 소각/유리화	
□ 1.1.2A 처분제한물질 미함유 □ 1.1.2B 처분제한물질 함유 □	
□ 1.2 비가연성	
□ 1,2.1 압축	
□ 1.2.1A 처분제한물질 미향유 □ 1.2.1B 처분제한물질 함유 □	
□ 1.2.2 기타처리	
□ 1.22A 처분제한물질 <u>미함유</u> □ 1.22B 처분제한물질 함유	
□ 2. 농축계액	
□ 2.1 건조처리	
□ 2.IA 유해물 <u>미향유</u> □ 2.IB 유해물 항유	
□ 2.2 폴리머 고화처리	
□ 2.2A 처분제한물질 미향유 □ 2.2B 처분제한물질 함유	
□ 2.3 IX선별 분리	
□ 2.3A 처분게한물질 <u>미항유</u> □ 2.3B 처분게한물질 항유	
□ <u>3. 계필터</u>	
□ 3A 처분제한물질 <u>미향유</u> □ 3B 처분제한물질 향유	
□ 4A 처분제한물질 <u>미함유</u> □ 4B 처분제한물질 함유	

Fig. 2. Radioactive waste profile form.

3. 결론

처분장 인수기준 23개 항목 중 처분제한물질의 유입여부를 확인하기 위하여 공정상 물질수지 확인 절차를 이행하면 드럼발생이후 처분제한물질의 유 입여부를 확인하기 위하여 재 측정하는 업무의 중 복성을 배제할 수 있다. 이로써 재측정 과정에서 발생되는 방사선작업종사자의 피폭선량을 저감하고 인적 및 물적 비용을 절감할 수 있다.

더불어 폐기물의 발생원부터 드럼포장까지의 공 정상의 물질수지 확인방법이 입증하기도 수월하기 때문에 원자력발전소에서 시행하고 있는 유해물질 관리 절차서와 병행하여 추진한다면 매우 유용한 방법이 될 것이다.

4. 참고문헌

- [1] 산업통상자원고시 제2015-102호, 방사성폐기물 인수방법 등에 관한 규정.
- [2] 원자력안전위원회고시 제2015-04호, 중·저준위 방사성폐기물 인도규정.
- [3] 방사성폐기물관리법.
- [4] The phase 1 development of the KHNP WCP(Waste Certification Program) applicable to the KORAD, 2015.