PSA를 위한 사용후핵연료 저장캐스크의 충돌 해석 및 평가

이상훈^{1*}, Belal Almomani², 강현국² ¹계명대학교, 대구광역시 달서구 달구벌대로 1095 ²한국과학기술원, 대전광역시 유성구 대학로 291 *shlee1222@kmu.ac.kr

1. 서론

2024년 한빛원전부터 시작되는 사용후핵연료 저 장조의 포화에 대비하여 국내 원자력계는 사용후핵 연료의 건식저장을 준비하고 있다. 건식저장시설의 도입에 앞서 해당 시설의 입지 및 운영으로 인한 주변 환경의 방사선적 위해도를 정량적으로 평가하 는 것은 매우 중요한 작업이다. 이를 위해서는 적 합한 사건수목을 도출하고 각각의 사건의 영향을 평가하는 작업이 필요하다. 본 논문에서는 사용후 핵연료 저장시설에 발생할 수 있는 가장 가혹한 사 건의 하나인 대형 항공기의 의도적 충돌을 고려한 확률론적 안전성 평가(PSA)를 수행하기 위하여 저 장캐스크에 항공기 엔진이 다양한 각도와 속도로 충돌하였을 때의 구조 거동을 평가하는 방법 및 절 차에 대하여 다룬다.

2. 참조 저장시설 및 용기

본 연구에서 고려된 참조 저장시설은 아래 그림 과 같이 단일 벽체의 건물 내에 한 개의 저장캐스 크가 배치되어 있는 시설이다.

Fig. 1. Reference storage facility.

연구에 활용한 참조 저장캐스크는 21다발의 PWR 연료를 저장할 수 있는 단일 볼트체결 격납구조를 가지는 용기이다. 항공기 충돌로 인한 방사성물질 누출을 평가하기 위해서는 건물의 관통여부 및 캐스 크의 구조적 거동을 모두 평가해야 한다.

Fig. 2. Estimation of release fraction in aircraft crash.

Fig. 2는 상기 참조저장시설에 항공기가 충돌하 였을 때 방사선 유출을 평가하기 위한 절차이다.

3. 항공기충돌 시나리오 및 조건

3.1 항공기 충돌 시나리오

본 연구에서 고려한 항공기 충돌시나리오는 대형 민항기의 의도된 충돌로서 Fig. 1에 제시된 참조 저 장시설의 벽체를 항공기의 엔진이 관통한 후 잔류속 도를 가지고 저장 캐스크를 타격하는 시나리오를 고 려하였다. 구체적으로 보잉사의 B747기의 충돌을 고 려하였고, 가장 강성이 큰 부품인 엔진에 의한 타격 이 주 평가대상이다. 항공기 엔진의 제원 등은 Shirai 등[1]이 발표한 논문에 제시된 내용을 따랐다.

3.2 항공기 충돌 속도 및 위치

PSA를 위하여 다양한 충돌속도 및 충돌위치를 고려한 평가가 필요하다. 저장건물의 벽체를 관통 한 항공기 엔진이 아래 그림과 같이 총 5가지 위 치에 충돌할 수 있다고 보고 각각의 경우에 대하여 평가를 수행하였다.

Fig. 3. Locations of aircraft engine impact.

캐스크에 항공기가 충돌하는 속도는 보수적으로 40 m/s 에서 160 m/s로 설정하였다. 이 속도는 항공기의 엔진 이 두께 70 cm인 건물의 벽체를 관통한 후의 잔류속 도로서 벽체 관통 전 속도로 환산하면 100 m/s에서 275 m/s가 된다. 각각의 속도로 충돌하는 항공기 엔진 은 실제로 모델링하지 않고 Riera 공식과 Shirai 등[1] 이 제시한 B747 엔진의 충돌하중이력선도를 활용하여 아래와 같이 등가의 충돌하중이력선도로 대체하였다.

Fig. 4. Impact load-time function for various velocity.

3.3 방사성물질 누설경로 평가

Fig. 5. Cask lid closure and lid gap analysis.

항공기 충돌로 인한 방사선적 위해도 평가의 핵 심 내용 중 하나는 충돌로 인한 핵종의 누출량 평 가이다. 본 연구에서는 Fig. 5에 제시된 바와 같이 충돌 시 캐스크 뚜껑과 본체 사이에 발생하는 틈새 의 단면적을 계산하여 누설량 계산의 근거로 활용 하였다. 뚜껑의 열림량이 격납경계에 사용된 금속 오링의 탄성회복거리보다 큰 경우 누설이 발생하는 것으로 간주하였으며, 볼트재료에 손상(failure)공식 을 적용하여 특정 변형률 이상 변형되었을 볼트가 끊어지는 현상을 모사하였다. 실제로 누설량을 계 산하기 위해서는 핵연료 손상비율(fuel damage ratio), 캐스크 내부압력 등을 알아야 하며 해당 내 용은 본 논문에서 다루지 않는다.

4. 평가결과

아래 그림은 측면 충돌(case 1, 2, 3) 시 다양한 충돌속도 하에 누설경로 생성이력을 도시한 것이다.

Fig. 6. Lid opening time history (case 1, 2, 3).

Fig. 7. Lid opening time history (case 5).

본 연구에서 고려한 총 5가지 충돌위치에 대하 여 평가를 수행한 결과 캐스크 뚜껑을 수직으로 타 격하는 조건이 가장 가혹함을 알 수 있었으며 측면 충돌의 경우 충돌에너지의 상당량이 캐스크의 동적 에너지로 전환되므로 저장시설 내 다른 캐스크 혹 은 구조물과의 2차 충돌이 중요한 평가 대상이 되 어야 한다는 결론을 도출하였다.

5. 결론

이상과 같이 단일벽체 저장건물과 금속 캐스크로 구성된 가상의 저장시설에 항공기가 다양한 각도와 속도로 충돌하는 경우 건물 및 캐스크의 구조응답 을 평가하였다. 본 연구는 본격적인 PSA를 수행하 기 위한 연구의 일부로서 용기 내부에 저장된 연료 의 파손, 핵종 누출 및 이에 따른 영향평가는 별도 의 연구로 진행될 예정이다.

6. 참고문헌

 K. Shirai, K. Namba, T. Saegusa, Safety analysis of dual purpose metal cask subject to impulsive load due to aircraft engine crash, J. Power Energy Systems 3 (2009) 72-82.