Luminescence properties of InGaN/GaN green light-emitting diodes grown by using graded short-period superlattice structures

  • 발행 : 2016.02.17

초록

InGaN/GaN multiple quantum wells (MQWs) have been attracted much attention as light-emitting diodes (LEDs) in the visible and UV regions. Particularly, quantum efficiency of green LEDs is decreased dramatically as approaching to the green wavelength (~500 nm). This low efficiency has been explained by quantum confined Stark effect (QCSE) induced by piezoelectric field caused from a large lattice mismatch between InGaN and GaN. To improve the quantum efficiency of green LED, several ways including epitaxial lateral overgrowth that reduces differences of lattice constant between GaN and sapphire substrates, and non-polar method that uses non- or semi-polar substrates to reduce QCSE were proposed. In this study, graded short-period InGaN/GaN superlattice (GSL) was grown below the 5-period InGaN/GaN MQWs. InGaN/GaN MQWs were grown on the patterned sapphire substrates by vertical-metal-organic chemical-vapor deposition system. Five-period InGaN/GaN MQWs without GSL structure (C-LED) were also grown to compare with an InGaN/GaN GSL sample. The luminescence properties of green InGaN/GaN LEDs have been investigated by using photoluminescence (PL) and time-resolved PL (TRPL) measurements. The PL intensities of the GSL sample measured at 10 and 300 K increase about 1.2 and 2 times, respectively, compared to those of the C-LED sample. Furthermore, the PL decay of the GSL sample measured at 10 and 300 K becomes faster and slower than that of the C-LED sample, respectively. By inserting the GSL structures, the difference of lattice constant between GaN and sapphire substrates is reduced, resulting that the overlap between electron and hole wave functions is increased due to the reduced piezoelectric field and the reduction in dislocation density. As a results, the GSL sample exhibits the increased PL intensity and faster PL decay compared with those for the C-LED sample. These PL and TRPL results indicate that the green emission of InGaN/GaN LEDs can be improved by inserting the GSL structures.

키워드