Annual Conference on Human and Language Technology (한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리))
- 2016.10a
- /
- Pages.171-175
- /
- 2016
- /
- 2005-3053(pISSN)
Debatable SNS Post Detection using 2-Phase Convolutional Neural Network
2-Phase CNN을 이용한 SNS 글의 논쟁 유발성 판별
- Heo, Sang-Min (NCSOFT Corp.) ;
- Lee, Yeon-soo (NCSOFT Corp.) ;
- Lee, Ho-Yeop (NCSOFT Corp.)
- Published : 2016.10.07
Abstract
본 연구는 SNS 문서의 논쟁 유발성을 자동으로 감지하기 위한 연구이다. 논쟁 유발성 분류는 글의 주제와 문체, 뉘앙스 등 추상화된 자질로서 인지되기 때문에 단순히 n-gram을 보는 기존의 어휘적 자질을 이용한 문서 분류 기법으로 해결하기가 어렵다. 본 연구에서는 문서 전체에서 전역적으로 나타난 추상화된 자질을 학습하기 위해 2-phase CNN 기반 논쟁 유발성 판별 모델을 제안한다. SNS에서 수집한 글을 바탕으로 실험을 진행한 결과, 제안하는 모델은 기존의 문서 분류에서 가장 많이 사용된 SVM에 비해 월등한 성능 향상을, 단순한 CNN에 비해 상당한 성능 향상을 보였다.