High-gas pressure stabilization of the meta-stable magnetic hydrides, oxides, and nitrides

Ping-Zhan Si^{1,3*}, Nai-Kun Sun², Chul-Jin Choi³

¹Zhejiang Key Lab of Magnetic Materials, China Jiliang University, Hangzhou, 310018, China
²School of Science, Shenyang Ligong University, Shenyang, 110159, China
³Korea Institute of Materials Science, Changwon, 51508, R. Korea
^{*}E-mail: pzsi@mail.com; pzsi@cjlu.edu.cn

A number of ferromagnetic materials, including La-Fe-Si-H, Sm-Fe-N, CrO₂, α"-Fe₁₆N₂, etc., are unstable at elevated temperatures, and this has become bottleneck for the synthesis and applications of these materials. In this work, a high-gas pressure heat-treatment device designed by Si was employed to suppress the decomposition of La-Fe-Si-H, Sm-Fe-N, and CrO₂. The self-made device can work under H₂/O₂/N₂ gas pressures up to 100 MPa and in temperatures up to 1000 °C. [1] High-density La_{0.5}Pr_{0.5}Fe_{11.4}Si_{1.6} hydride sintered plate with a large magnetic-entropy change that almost twice as large as that of bonded La(Fe,Si)₁₃ hydrides were obtained under 50 MPa H₂ heat-treatment.[2] The high pressure H₂ suppresses desorption of H atoms and thus makes high temperature sintering possible. This work opens an effective route for synthesizing thin magnetic refrigerants of La(Fe, Si)₁₃H_x hydrides. [3] High-performance Sm₂Fe₁₇N_x powders were obtained by nitriding Sm₂Fe₁₇ under N₂ with gas pressures up to 40 MPa, which is beneficial in suppressing the decomposition of Sm₂Fe₁₇N_x and enhancing the nitrogen absorption rate, and thus is effective for synthesizing high-quality Sm-Fe-N.[4] The Mn₄N prepared under high N₂ gas pressures exhibits much larger coercivity in comparison with that prepared under ambient N₂ pressures.[5] Ultra-high purity CrO₂ were prepared by decomposing CrO₃ under 40 MPa O₂. [6] The CrO₂ nano- and micro-particles were prepared by nitriding Cr₂O₃ under high O₂ pressures. [7, 8] The influence of high-pressure nitrogenation on the structure and magnetic properties of SmFe₁₀Mo₂ and La_{0.5}Pr_{0.5}Fe_{11.4}Si_{1.6} has also been studied. [9, 10] High gas pressure heat-treatment can to some extent enhance the gas-solid reaction rate, enriching the gas-atom concentration in the final products, and suppress the decomposition of meta-stable compounds.

References

- [1] PZ Si, H Feng, XF Xiao, SJ Yu, HL Ge, A Device for High Gas Pressure Heat-treatment, Patent of China, No. ZL201220599278.1
- [2] NK Sun, J Guo, XG Zhao, PZ Si, JH Huang, ZD Zhang, High magnetic-refrigeration performance of plate-shaped La_{0.5}Pr_{0.5}Fe_{11.4}Si_{1.6} hydrides sintered in high-pressure H₂ atmosphere, Applied Physics Letters, 106(2015)092401
- [3] NK Sun, ZX Ren, J Guo, PZ Si, MZ Sun, Effect of B-doping on the structure and magnetocaloric properties of plate-shaped La_{0.6}Pr_{0.4}Fe_{11.4}Si_{1.6}H_x sintered in high-pressure H₂ atmosphere, AIP Advances, in press
- [4] XF Xiao, PZ Si, HL Ge, NK Sun, CJ Choi, Direct diffusion synthesis of high-performance Sm-Fe-N under high N₂-gas pressures, Physics Letters A, Submitted

- [5] PZ Si, W Jiang, HX Wang, M Zhong, HL Ge, CJ Choi, JG Lee, The high nitrogen pressure synthesis of manganese nitride, Chinese Physics Letters 29(2012)128101
- [6] PZ Si, XL Wang, CJ Choi, et al., High-O₂ Pressure synthesis, structure, and magnetic properties of high purity CrO₂, to be submitted
- [7] PZ Si, XL Wang, XF Xiao, HJ. Chen, XY Liu, L Jiang, JJ Liu, ZW Jiao, HL Ge, Structure and magnetic properties of Cr₂O₃/CrO₂ nanoparticles prepared by reactive laser ablation and oxidation under high pressure of oxygen, Journal of Magnetics 20(2015) 211-214
- [8] CH Jin, PZ Si, XF Xiao, H Feng, Q Wu, HL Ge, M Zhong, Structure and magnetic properties of Cr/Cr₂O₃/CrO₂ microspheres prepared by spark erosion and oxidation under high pressure of oxygen, Materials Letters 92(2013)213-215
- [9] NK Sun, J Guo, SJ Du, SN Xu, PZ Si, JJ Liu, Influence of high-pressure nitrogenation on the structure, magnetism and microwave absorption properties of SmFe₁₀Mo₂, Acta Metallurgica Sinica-English Letters 28(2015)781–786
- [10] NK Sun, ZX Ren, J Guo, SJ Du, PZ Si, Influence of high-pressure nitrogenation on the structural, magnetic and magnetocaloric properties of La_{0.5}Pr_{0.5}Fe_{11.4}Si_{1.6}, Acta Metallurgica Sinica-English Letters 28(2015)1382–1386