인체 골격 정보를 이용한 Multiclass SVM 기반의 자세 인식 분류 기법

  • Published : 2015.11.06

Abstract

본 논문에서는 효율적인 자세인식을 위해 인체 골격 정보를 활용한 멀티클래스 SVM(Multiclass Support Vector Machine)학습 기반의 자세 인식 분류 기법을 제안한다. RGB 카메라로 취득한 영상을 활용하거나 깊이 카메라로부터 취득한 골격 정보를 그대로 사용하는 기존 연구와 달리 제안 기법에서는 깊이 정보로부터 추출한 인체의 3 차원 골격 정보를 이용하여 고차원의 특징을 추출하고 그로부터 자세 인식 분류를 수행한다. 제안 기법의 특징 벡터는 깊이 정보에서 취득한 골격 정보의 관절간 각도의 조합으로 구성하여 인체의 골격 편차에 강인할 뿐 아니라 특징의 차원을 효과적으로 감소시킬 수 있다. 또한 분류기로는 멀티클래스 SVM 방식 중 one-vs-one 분류 방식을 이용하여 학습 및 판별을 수행함으로써 제안 기술의 성능을 평가한다. 실험을 통해 제안 기법은 다수의 자세에서 비교하는 다른 학습 기법보다 비교적 높은 자세인식률을 보인다.

Keywords