City Gas Consumption Analysis per 1m² according to Exclusive Dwelling Area in Residential Buildings - Focused on case of Ulsan -

YeongJin Yu¹, Sangho Kim², SungPil Yang³ and Kiyoung Son⁴

Abstract: Currently, effective energy management of buildings is necessary because of accelerated global climate change and resource crisis. Especially, in the case of South Korea, city gas consumption occupies 11.8% of the total energy and 39.6% is residential use among them. Therefore, for reducing the city gas consumption, the effectiveness of residential use is needed. To address this issue, the objective of this study is to analyze the difference of the city gas consumption according to the space arrangement in the apartment building. To achieve this objective, an apartment complex having over 1,000 households was selected then, according to the space arrangement such as south-east and south-west, the data of 59.97m2 and 84.96m2 were analyzed by using statistics method. As a result, in 59.97m2 and 84.96m2, the total city gas amount in 2012 showed that 9.2% and 8.4% were more increased at south-west than south-east respectively. In the future, the findings of this study can be used to develop the prediction model of city gas consumption in apartment building.

Keywords: City Gas; Apartment Building; Space Arrangement; Analysis of Variance

I. INTRODUCTION

As the city gas consumption in 2013 is 24.878 mil. TOE, it occupied 11.8% of the total end-use energy. In addition, according to the Korea city gas association report, approximately 39.6% of the total city gas used in 2013 was consumed as a residential use. Therefore, the effective use of city gas in residential use is necessary.

Therefore, to address this issue, the objective of this study is to analyse the differences of city gas consumption according to the space arrangement such as south-east and south-west. In this study, the apartment complex having over 1,000 households is selected and the data of city gas consumption in the households of 59.97m² and 84.96m² are collected then analysed whether or not there is different between exclusive dwelling areas by using Analysis of Variance (ANOVA). In the future, the findings of this study can be used to develop the prediction model of city gas consumption in apartment building. In addition, major stakeholders can be utilized as a basic data for operating apartment buildings. Fig. 1 shows the methodology of this study.

FIG. 1. METHODOLOGY						
Target selection	Apartment over 1,000 house holds with south-east and south-west location					
Descriptive analysis	Annual, 1m ² city gas amount according to exclusive dwelling area					
ANOVA	Hypothesis test: it is equal the city gas amount per 1m ² according to space arrangement such as south-east and south-west					
Normality test	Annual, 1m ² city gas amount according to exclusive dwelling area					

II. DATA COLLECTION METHODS

For analysing the city gas consumption, this study utilizes ANOVA analysis to identify whether or not the average differences of two group is statistically significant and following hypothesis was established.

Hypothesis 1 $(59.97m^2)$:

$$H_o: \mu_{CFE} = \mu_{CFW}$$
$$H_1: \mu_{CFE} \neq \mu_{CFW}$$

Where μ_{CFE} : City gas amount (south-east) μ_{CFW} : City gas amount (south-west)

Hypothesis 2 (84.96m²):

$$H_o: \mu_{CEE} = \mu_{CEW}$$
$$H_1: \mu_{CEE} \neq \mu_{CEW}$$

Where

 μ_{CEE} : City gas amount (south-east) μ_{CEW} : City gas amount (south-west)

Hypothesis 1 and 2 is to represent whether or not the average differences of city gas consumption is statistically significant according to the south-east and south-west of 59.97m² and 84.96m². In other words, Hypothesis 1 means that the city gas consumption difference is statically significant between south-east and south west in 59.97m² and Hypothesis 2 shows that the city gas consumption difference is statically significant between south-east and south-east

¹ Undergraduate Student, School of Architectural Engineering, University of Ulsan, Ulsan, Korea, yanua17@naver.com

² M.S student, School of Architectural Engineering, University of Ulsan, Ulsan, Korea, jjangho89@naver.com

³ M.S student, School of Architectural Engineering, University of Ulsan, Ulsan, Korea, chelneambi@hanmail.net

⁴ Assistant Professor, School of Architectural Engineering, University of Ulsan, Ulsan, Korea, sky9852111@ulsan.ac.kr (*Corresponding Author)

A. Descriptive Analysis

Table 1 shows the city gas consumption per 1m^2 in 59.97m² and 84.96m² according to south-east and south-west.

TABLE 1. DESCRIPTIVE ANALYSIS OF CITY GAS CONSUMPTION PER 1M²

	59.97	m ²	84.96 m ²		
Statistics	South-	South-	South-	South-	
	East	West	East	West	
Mean	11.42	12.48	10.61	11.99	
Median	10.64	12.49	10.22	11.98	
Std. Dev	5.50	5.27	3.44	3.35	
Skewness	.38	.23	.09	.02	
Kurtosis	35	38	99	99	

Fig. 2 is the box plot of 1 m^2 consumption of in 59.97m² and 84.96m². As shown in Fig. 2, it can be identified there were differences between the averages of 59.97m² and 84.96m². In detail, in 59.97m² and 89.64m², south-west was more increased by 1.06m³ and 1.38m³ than south-east respectively. In other words, it was increased by 9.2% and 8.4% in each exclusive dwelling. In addition, it can be analysed that 1 m^2 consumption of 59.97m² according to the space arrangement such as south-east and south-west is more than 84.96m².

FIG. 2. BOX PLOT OF GAS CONSUMPTION PER $1M^2$ (a) 59.97 m² and (b) 84.96 m²

B. Analysis of Variance

To verify the hypothesis established in this study based on the descriptive analysis, ANOVA analysis was conducted. Table 2 shows the F-test results of $1m^2$ city gas consumption in 59.97m² and 84.96m². The p-values are 0.04 and 0.03 respectively. Therefore, it is confirmed that there are statistically significant like annual consumption.

TABLE 2. F-TEST RESULTS OF 1M² AMOUNT

TABLE 2.1 TEST RESCENS OF TWI AMOUNT								
Stat	istics	Sum of Squares	df	Mean Square	F	sig		
	Between Groups	116.42	1	116.2	4.03	.04		
59.97m ²	Within Groups	12,259.69	425	28.84				
	Total	12,376.12	426					
	Between Groups	16.47	1	16.47	4.78	.03		
84.96m ²	Within Groups	5,136.82	425	3.46				
	Total	5,153.29	426					

Although the average difference between two groups is identified through ANOVA analysis, Normality test is necessary to verify whether or not the collected data is normally distributed. In this study, Normality test is conducted to check the normality of collected data. Generally, to check goodness of hit of selected samples, Kolmogorov-Smirnov and Shapiro-Wilk test are used. Especially, Kolmogorov-Smirnov test is used when samples are over 50.

As shown in Table 3, the residuals of samples in 59.97m² and 84.96m² were analysed. As a result, as the p-value of Kolmogorov-Smirnov test is over 0.05 in both of them, null-hypothesis is accepted and this means that the residuals are normally distributed.

TABLE 5. NORMALITY TEST

Te	est	Kolmogorov-Smirnov			Shapiro-Wilk		k
Gr	oup	Statistic	df	Sig	Statistic df Sig		Sig
50.07m ²	South- East	.063	182	.07	.982	182	.062
59.97III	South- West	.038	245	.20*	.990	245	.102
84.96m ²	South- East	.07	212	.08	.973	212	.07
	South- West	.06	235	.20*	.972	235	.13

* This is a lower bound of the true significance.

III. CONCLUSION

The objective of this study is to analyse the difference of the city gas consumption per $1m^2$ according to the space arrangement in the apartment building. As a result, $1m^2$ city gas consumption of 59.97m² and 84.96m² with south-west is more increased by 1.06m³ and 1.38m³ respectively. It means that $1m^2$ consumption of 59.97m² is larger than the consumption of 84.96m². In addition, it was confirmed that the results are statistically significant through ANOVA analysis. The limitation of this study is that, although data are collected and analyzed in one apartment complex to minimize the impact of exterior factors, it is necessary to verify and compare with various complexes' data in the future.

ACKNOWLEDGEMENT

This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology(2014R1A1A1004288)

REFERENCES

- [1] 2013 Performance Record, Retrieved September 22, 2014 form http://citygas.or.kr
- [2] Kang, B. and Jang, J., "A Study on the Planning of Block Housing Considering Daylight Condition", Journal of Architectural Institute of Korea, 21(2), pp. 79-88, 2005
- [3] Shim, Y., "A study on the Estimation of Standard Heating City Gas Consumption of Apartment Housing", Journal of the Korean Solar Energy Society, 26(3), pp. 89-97, 2006
- [4] Year Book of Energy Statistics, Retrieved January 2, 2014 form http://www.keei.re.kr/