전력변동 발생기의 전압새그 모드 동작시 부하 역률에 따른 출력 전압 변동 해석

정혜수, 김학수, 정재헌, 노의철 부경대학교

Analysis of Output Voltage Variation of a Voltage Disturbance Generator with the Variation of Load Power Factor in Voltage Sag Mode

Hye Soo Jeong, Hak Soo Kim, Jae Hun Jung, Eui Cheol Nho Pukyong National Univ.

ABSTRACT

본 논문에서는 변압기 기반 전압변동 발생기의 외란 발생 동작 시 부하단의 전압 특성을 분석하였다. 부하 역률에 따른 전압강하의 차이를 분석하였고 역률이 0.8 지상인 경우 전압강하가 가장 크게 발생함을 실험을 통하여 확인하였다.

1. 서 론

신·재생에너지의 사용량이 증가함에 따라 계통안정도 확보를 위한 그리드코드에 대한 연구가 활발히 진행되고 있다. 신·재생에너지원에 구성된 전력변환장치가 그리드코드를 준수하는 지에 대한 시험을 수행하기 위해서는 계통 사고를 모의하는 전압 외란 발생기가 필요하다. 본 논문에서는 참고문헌 [1]의 변압기 기반 전압 외란 발생기의 새그 동작 시 직렬 변압기와 SCR 사이리스터에 의한 전압강하 성분을 부하 역률에 따라 분석하였고 실험을 통하여 부하단 전압의 변동을 확인하였다.

2. 시스템 구성과 새그 발생 조건

그림 1은 변압기 기반의 새그 발생이 가능한 3상 전압 변동 발생기 회로를 나타낸다.

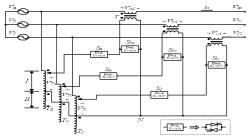


그림 1 변압기 기반 전압 변동 발생기

Fig. 1 Transformer-based voltage disturbance generator $\$

새그를 발생시키기 위한 전압은 직렬 변압기 1차 측에 단권 변압기를 통하여 제공된다. 새그 동작 시 단권변압기의 2차 측 전압을 직렬 변압기의 1차 측에 인가할 수 있도록 역병렬로 연 결된 SCR 사이리스터를 삽입하였다. 새그 발생 시 각각의 스 위치 상태와 새그 발생 가능 조건을 그림 1의 a 상을 기준으로 하여 표 1에 나타내었다.

표 1 스위칭 상태 및 새그 발생 조건

Table 1 Switching status and possible turn on condition in sag

	Ü		•
Mode	Sa	Sba	Condition
Normal	OFF	ON	$i_a > 0$ and $V_a > 0$ $i_a < 0$ and $V_a < 0$
Sag	ON	OFF	$i_a > 0$ and $V_a < 0$ $i_a < 0$ and $V_a > 0$

3. 전압 외란 발생 시 전압강하 성분 해석

3상의 동작이 동일하므로 한상에 대한 등가회로를 통하여 전압강하 성분을 분석하도록 한다. 그림 2는 새그 발생 시 a 상의 등가회로를 나타낸다.

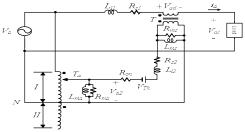
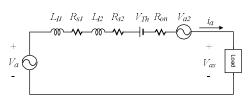
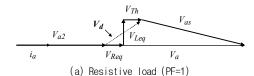


그림 2 새그 발생 시 a-상의 등가회로

Fig. 2 Equivalent a-phase circuit diagram in case of sag mode

그림 2에서 R_{sI} 과 R_{sQ} , L_{II} 과 L_{ID} 는 각각 직렬 변압기의 권선 저항과 누설 인덕턴스를 나타내고, L_{ms} 와 L_{ma} , 그리고 R_{ms} 와 R_{ma} 는 각 변압기의 자화 인덕턴스와 철손 성분을 나타낸 것이다. SCR 사이리스터의 등가회로는 순방향 온 전압강하 성분 (V_{Th}) 과 저항 성분 (R_{on}) 으로 나타내었다. 그림 2의 변압기의 각파라미터는 식 (1)의 조건을 만족하므로 그림 2의 회로는 그림 3과 같이 간략화 할 수 있다.




그림 3 새그 동작 시의 간소화된 등가회로 Fig. 3 Simplified equivalent circuit in sag mode

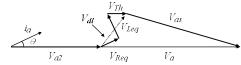
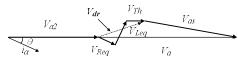

$$|jwL_{ms}//R_{ms}| \gg |R_{s1} + R_{s2} + jwL_{l1} + jwL_{l2}|$$
 (1)

그림 3의 저항 및 누설 리액턴스 성분에 의한 전압강하를 식 (2)와 식 (3)으로 나타내면 부하의 역률에 따른 새그 발생 시 각 부 전압은 그림 4의 페이저도로 나타낼 수 있다.


$$V_{Rea} = R_{ea} \times i_a = (R_{s1} + R_{s2} + R_{on}) \times i_a \tag{2}$$

$$V_{Lea} = jwL_{ea} \times i_a = jw(L_{l1} + L_{l2}) \times i_a$$
(3)

(b) Capacitive load (leading power factor: PF=0.8)

(c) Inductive load (lagging power factor: PF=0.8)

그림 4 페이저도

Fig. 4 Phasor diagram

직렬 변압기 2차 측 발생 전압 V_d , V_d 및 V_{dr} 은 각각 식(4), 식(5) 그리고 식(6)으로 나타낼 수 있다. 각각의 식에서 L_{load} , C_{load} , 그리고 R_{load} 는 부하를, w는 전원전압의 각주파수를 의미한다.

$$\begin{split} V_d &= \sqrt{(V_{Req} + V_{Th})^2 + V_{Leq}^2} \sin(wt + \theta) \\ & \ \, \forall , \ \, \theta = \tan^{-1}(\frac{wL_{eq}}{R_{eq}}) \end{split} \label{eq:Vdeq} \end{split} \tag{4}$$

$$\begin{split} V_{dl} &= \sqrt{(A + V_{Th})^2 + B^2} \sin(wt + \theta_l) \\ \Leftrightarrow & |\mathcal{I}| \lambda|, \quad A = V_{Req} \cos\theta - V_{Leq} \sin\theta \\ & B = V_{Req} \sin\theta + V_{Leq} \cos\theta \\ & \theta = \tan^{-1}(\frac{1}{wC_{Lord} \times R_{Lord}}), \ \theta_l = \tan^{-1}(\frac{B}{A}) \end{split}$$

$$\begin{split} V_{dr} &= \sqrt{(C + V_{Th})^2 + D^2} \sin(wt + \theta_r) \\ & \rightleftharpoons 7 | \aleph |, \ C &= V_{Req} \cos\theta + V_{Leq} \sin\theta \\ & D &= -V_{Req} \sin\theta + V_{Leq} \cos\theta \\ & \theta &= \tan^{-1}(\frac{wL_{Load}}{R_{Load}}), \qquad \theta_r = \tan^{-1}(\frac{D}{C}) \end{split}$$

$$i_{a,sag} = i_a \times (1 - sag[pu]) \tag{7} \label{eq:7}$$

외란 발생 시 부하 전류의 크기는 새그의 크기에 대하여 식(7)로 나타낼 수 있다. 이상에서 알 수 있듯이 외란 발생 동작시 전압 강하 성분은 새그 동작 시 부하 전류의 크기와 위상에따라 변하게 된다.

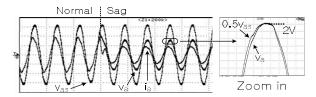
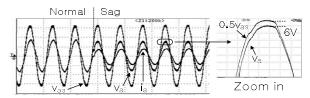

표 2 실험 파라미터

Table 2 Experimental parameters


Para	Value	
Transformer (%Z = 5 [%])	R_{sI}, R_{s2}	0.3 [Ω]
	L_{l1}, L_{l2}	0.8 [mH]
	Rated	220 [V], 3 [kVA]
	V_{Th}	0.8 [V]
Thyristor	R_{on}	5 [mΩ]
	Part Num.	SKKT 55/16E

4. 실험 결과

그림 5는 실험을 통하여 외란 발생 동작 시 부하역률에 따른 전압강하 성분을 측정한 것이다. 실험 파라미터는 표 2와 같으며 정상 동작 시의 부하는 실험의 편의를 위하여 단상 2 [kVA]로 설정한 후 실험을 수행하였다. 새그의 비율은 정상동작시의 50 [%]로 설정하였다.

(a) Capacitive load (leading power factor: PF=0.8)

(b) Inductive load (lagging power factor: PF=0.8)

그림 5 새그 동작 시 각 부하 역률에 대한 전원 전압과 부하 전압의 실험 파형

Fig. 5 Experimental waveforms of va and vas with the variation of power factor in sag mode

5. 결론

본 논문에서는 변압기 기반 전압변동 발생장치의 새그 발생시 직렬 변압기와 SCR 사이리스터에 의한 전압강하 성분을 부하 역률에 대하여 분석하였다. 외란 발생 오차가 가장 큰 경우는 부하의 역률이 지상인 경우이며 50~[%] 새그 발생 시 부하전압의 크기는 $105.8~[V_{rms}]$ 로서 정상 동작 시 전압을 기준으로 52~[%]의 전압강하가 발생하였다.

본 논문에서 분석한 전압강하 성분을 고려하여 기존의 방식 보다 정확한 외란을 발생할 수 있도록 함으로써 기존의 변압기 기반의 외란 발생기의 성능을 향상시키는데 유용하게 사용될 것으로 기대된다.

참 고 문 헌

[1] W.Y. Byeon, J.W. Kim, K.S. Lee, E.C. Nho, I.D. Kim, T.W. Chun, H.G. Kim, "Voltage Sag Swell Generator for Power Quality Disturbance of Dynamic UPS System", The Transactions of Korean Institute of Power Electronics, Vol. 10, No.1, pp. 102 107, Feb. 2005.