Magnetic properties and magnetocaloric effect in La_{0.7}Ca_{0.3-x}Ba_xMnO₃ exhibiting first-order and second-order magnetic phase transitions

T. L. Phan^{1*}, T. A. Ho², T. D. Thanh², C. U. Jung¹, B. W. Lee¹, and S. C. Yu²

¹Department of Physics and Oxide Research Center, Hankuk University of Foreign Studies, Yongin 449-791, Korea

²Department of Physics, Chungbuk National University, 361-763 Cheongju, Korea

*Electronic mail: ptlong2512@yahoo.com

We have prepared polycrystalline samples $La_{0.7}Ca_{0.3,x}Ba_xMnO_3$ (x = 0, 0.025, 0.05, 0.075 and 0.1) by solid-state reaction, and then studied their magnetic properties and magnetocaloric (MC) effect based on magnetization versus temperature and magnetic-field (M-H-T) measurements. Experimental results reveal the easiness in tuning the Curie temperature ($T_{\rm C}$) from 260 to about 300 K by increasing Ba-doping concentration (x) from 0 to 0.1. Under an applied field H = 50 kOe, maximum magnetic-entropy changes around T_c of the samples can tuned in the range between 6 and 11 J·kg⁻¹·K⁻¹, corresponding to refrigerant-capacity values ranging from 190 to 250 J·kg⁻¹. These values are comparable to those of some conventional MC materials, and reveal the applicability of La_{0.7}Ca_{0.3-x}Ba_xMnO₃ materials in magnetic refrigeration. Analyses of the critical behavior based on the Banerjee criteria, Arrott plots and scaling hypothesis for M-H-T data, and scaling laws for the MC effect prove a magnetic-phase separation when Ba-doping concentration increases. In the doping region x = 0.05-0.075, the samples exhibits the crossover of first- and second-order phase transitions with the values of critical exponents β and γ close to those expected for the tricritical mean-field theory. The samples with x < 0.05 and x > 0.075exhibit first- and second-order transitions, respectively. More detailed analyses related to the Griffiths singularity, the critical behavior for different magnetic-field intervals started from 10 kOe, and the magnetic-ordering parameter $n = dLn |\Delta S_m|/dLnH$ (where ΔS_m is the magnetic-entropy change) demonstrate magnetic inhomogeneities and multicritical phenomena existing in the samples.

Keywords: Perovskite manganites, Magnetic properties, Magnetocaloric effect