Formation of nanocrystalline Fe₅₀Co₅₀ powders by mechanical alloying

D. H. Manh^{1*}, D. K. Tung¹, L. T. H. Phong¹, N. X. Phuc¹, B. W. Lee², and T. L. Phan²

¹Institute of Materials Science, Vietnam Academy of Science and Technology,

18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam

²Department of Physics and Oxide Research Center, Hankuk University of Foreign Studies,

Yongin 449-791, South Korea

*Email: manhdh@ims.vast.ac.vn

Fe₅₀Co₅₀ nanocrystals were prepared by mechanical alloying in air, used Fe and Co powders (3N). The variations of crystal structure, morphology, and magnetic property were investigated as a function of milling time (in the range between 0.5 and 32 h) by using an X-ray diffractometer, field-emission scanning electron microscopy, and vibrating sample magnetometer. The complete formation of bcc Fe₅₀Co₅₀ solid solution was observed after 10 h of alloying in dependence on the milling conditions. At this time, the alloy powders with average crystallite size of about 8 nm and a maximum saturation magnetization of 200 emu/g were obtained. For longer milling times, both the crystallite size and the magnetization decreased, while the coercive increased rapidly. The saturation magnetization of as-milled powders remained almost unchanged for a long time of their keeping in air, which suggests a due to a formation of thin oxide layer on the particles.

Keywords: FeCo nanoparticles, Mechanical alloying, Magnetic properties