Influence of magnetic field on the critical behavior of $La_{1-x}Ca_xMnO_3$ (x = 0.2, 0.3, 0.4)

P. Zhang^{d*}, P. Lampen^c, T. L. Phan^a, S. C. Yu^a, T. D. Thanh^b, N. H. Dan^b, V. D. Lam^b, H. Srikanth^c, M. H. Phan^c

^aDepartment of Physics, Chungbuk National University, Cheongju 361-763, South Korea
^bInstitute of Materials Science, Vietnam Academy of Science and Technology, Hanoi, Vietnam
^cDepartment of Physics, University of South Florida, Tampa, FL33620, USA
^dSchool of Electrical & Electronic Engineering, Hubei University of Technology, Wuhan, 430068, China

The properties of the ferromagnetic to paramagnetic transition in polycrystalline manganites $La_{1,x}Ca_xMnO_3$ (*x*= 0.2, 0.3, 0.4) is presented in detail. The first order transition in $La_{0.7}Ca_{0.3}MnO_3$ is bordered by second order transitions in the neighboring $La_{0.8}Ca_{0.2}MnO_3$ and $La_{0.6}Ca_{0.4}MnO_3$ compositions. Analysis of the Landau–Lifshitz coefficients obtained from Arrott plots showed that while *b*(T) is uniformly negative in $La_{0.7}Ca_{0.3}MnO_3$, it changes from positive to negative values in different magnetic field ranges for $La_{0.8}Ca_{0.2}MnO_3$ and $La_{0.6}Ca_{0.4}MnO_3$ (model) under the application of a strong field. The Kouvel–Fisher procedure performed on the samples with continuous transitions over different ranges of fitting field confirmed tricritical exponents in $La_{0.6}Ca_{0.4}MnO_3$ but revealed that the critical exponents obtained for $La_{0.8}Ca_{0.2}MnO_3$ depend strongly on the choice of field range, shifting from values consistent with short range (3D Heisenberg/3D Ising) interactions to those approaching the tricritical mean field model. This observation is attributed to the influence of magnetic field on the coexistence of energetically close double-exchange and super-exchange ferromagnetic interactions in $La_{0.8}Ca_{0.2}MnO_3$.

Fig. 1. *a* and *b* parameters in the Landau-Lifshitz equation of state obtained by fitting in different field ranges as a function of temperature in $La_{1-x}Ca_xMnO_3$.

The shadowed areas represent the temperature zone of $T_{\rm C}$ shifting with the applied field.