Synthesis and Magnetic Properties of SrZn_xFe_{(2-x)}Fe_{16}O_{27} (0.0 \leq x \leq 2.0)

Jae-Hyoung You^{*}, Sung Joon Choi, Sunwoo Lee, and Sang-Im Yoo^{*}

Department of Materials Science and Engineering, Research Institute of Advanced Materials (RIAM),

Seoul National University, Seoul 151-744, Korea

*Sang-Im Yoo, e-mail : siyoo@snu.ac.kr

The hexagonal ferrite or simply hexaferrite is a ferromagnetic oxide material that has a hexagonal crystal structure. Since its discovery in 1950s, hexaferrite has drawn a great attention of many researchers due to its low price and multitude of uses and applications. W-type hexaferrite exhibits high saturation magnetization (M_3) about 80 emu/g and high anisotropy field (H_a) about 19 kOe. For this reason, W-type hexaferrite has attracted attention for microwave applications. In this report, we tried to prepare Zn-substituted SrW bulk samples with the compositions of SrZn_xFe_(2-x)Fe₁₆O₂₇ ($0.0 \le x \le 2.0$) in a reduced oxygen atmosphere, and identify the effect of Zn²⁺ substitution on their magnetic properties. Furthermore, we tried to investigate the phase stability region change of SrZn_xFe_(2-x)Fe₁₆O₂₇ with varying *x*. For these purposes, the samples were annealed at the temperature region of 1125–1350 °C for 2 h in $PO_2 = 10^{-3}$ atm. As a result, lattice parameters of the samples increased with increasing *x* due to larger ionic radius of Zn²⁺ than Fe²⁺. The saturation magnetization of the samples increased with increasing *x* from 0 to 1.0, and decreased from x = 1.0 to 2.0 which is a similar behavior to the spinel ferrite when nonmagnetic ion of Zn²⁺ is substituted. The temperature of phase stability region of SrZn_xFe_(2-x)Fe₁₆O₂₇ decreased with increasing *x*, and the width of the phase stability region remained almost constant. Detailed properties of SrZn_xFe_(2-x)Fe₁₆O₂₇ W-type hexaferrite will be presented for a discussion.