Exchange Bias Effect Determined by Anisotropic Magnetoresistance in Co_xNi_{1-x}O/Ni_{0.8}Fe_{0.2} Bilayer System

Woosuk Yoo¹, Seongmin Choo¹, Kyujoon Lee¹, Sinyong Jo², Chun-Yeol You^{2,*}, Jung-II Hong³, Myung-Hwa Jung¹

¹Department of Physics, Sogang University, Seoul 121-742, South Korea ²Department of Physics, Inha University, Incheon 402-752, South Korea ³Department of Emerging Materials Science, DGIST, Deagu 711-873, South Korea

Exchange bias effect is the unidirectional anisotropy induced by the interface between ferromagnetic (FM) and antiferromagnetic (AFM) layers below the Neél temperature of antiferromagnetic materials, leading to a shift of hysteresis loop. The effect of exchange bias has been studied for many years because of its possible application in spintronics, especially in spin valves for magnetic recording and sensor devices [1]. The essentials of exchange bias effect are not fully understood yet. It is generally accepted that the uncompensated moments in the AFM layer play an important role in pinning the spins at the interface and determine the strength of exchange bias field [3]. We prepared bilayer systems composed of the FM layer Ni_{0.8}Fe_{0.2} and the AFM layer Co_xNi_{1-x}O (x = 0.3, 0.4, 0.5, and 0.6) by using the DC/RF magnetron sputtering method. Exchange bias field H_{EB}, the shift field

in hysteresis loop, was observed in all the Ni_{0.8}Fe_{0.2}/Co_xNi_{1-x}O bilayer systems. The changes of H_{EB} were explicitly studied for various parameters such as the composition of AFM material x, the measured temperature T, and the angle θ of applied magnetic field. We measured anisotropic magnetoresistance (AMR) and analyzed the AMR data to extract the H_{EB}, since the peak structure in AMR is not exactly same to the coercive field H_C, unlike the magnetization data. We propose a new approach to analysis for AMR in determining H_{EB} and H_{C} along the field angle θ with respect to the field-cooling direction. The results were compared with the variations of H_{EB} and H_C simulated by Mauri model and spin-glass model [3].

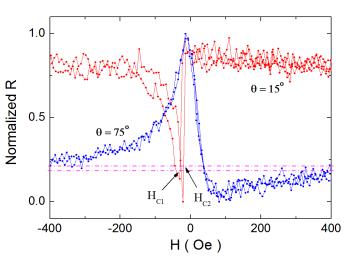


Fig. 1. AMR data for $\Theta = 15^{\circ}$ and 75° to estimate $H_{EB} = (H_{C1}+H_{C2})/2$

- [1] J. C. S. Kools, IEEE Trans. Magn. 32, 3165 (1996).
- [2] R. Morales and Z. P. Li, Phys. Rev. Lett. 102, 097201 (2009).
- [3] Radu, Florin, and Hartmut Zabel. "Exchange bias effect of ferro-/antiferromagnetic heterostructures." Magnetic heterostructures. Springer Berlin Heidelberg, 2008. 97-184.