
Core-shell ZnFe₂O₄/ZnS composites for photocatalytic applications

Pilsun Yoo^{1,*}, D. Amaranatha Reddy¹, Sang-Eun Bae², Bo Wha Lee¹, Seong Huh², and Chunli Liu¹

¹Department of Physics and Oxide Research Center, Hankuk University of Foreign Studies, Yongin 449-791, Repubilc of Korea

²Department of Chemistry and Protein Research Center for Bio-Industry, Hankuk University of Foreign Studies, Yongin 449-791, Republic of Korea

ZnFe₂O₄/ZnS core-shell nanocomposites were prepared to combine the magnetization effect of ZnFe₂O₄ nanoparticles (NPs) and the photocatalytic activity of ZnS for retrievable photocatalytic systems. A two-step synthesis procedure was adopted to prepare the ZnFe₂O₄/ZnS core-shell nanocomposites. First, magnetic ZnFe₂O₄ NPs with an average dimension of 60 nm were synthesized by a hydrothermal method. Then, ZnS NPs with an approximate dimension of 5 nm were successfully attached to the surface of the as-synthesized ZnFe₂O₄ magnetic NPs through a co-precipitation process. Structural features of ZnFe₂O₄ NPs and the composite material were investigated with PXRD and TEM measurements. Although bulk ZnFe₂O₄ is an antiferromagnetic material, hydrothermally prepared ZnFe₂O₄ NPs exhibited high enough magnetization to make it possible to re-collect the composites by a magnet after photocatalytic reactions. Photocatalytic decomposition of methyl orange by ZnFe₂O₄/ZnS core-shell nanocomposites under the irradiation of near-visible light was compared with that of ZnS NPs under the same conditions. The ZnFe₂O₄/ZnS core-shell nanocomposites showed much faster reaction rate in early stage of reaction (within the first 3 h), and comparable effects after 4 h. Therefore, the ZnFe₂O₄/ZnS nanocomposites prepared by simple approach can be a promising retrievable photocatalyst.

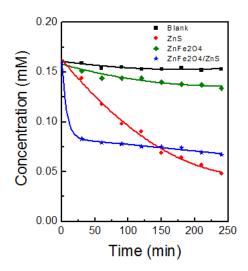


Fig. 1 (a) ZnFe₂O₄ nanoparticle; (b) ZnFe₂O₄ /ZnS composite; (c) ICDD data of ZnFe₂O₄ ; (d) ICDD data of ZnS

Fig. 2 photocalalytic behavior of ZnFe₂O₄ nanoparticle, ZnS nanoparticle, and ZnFe₂O₄ /ZnS composite