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Abstract

The increasing complexity of integrated circuits and IP-based hardware designs have created the risk of 
hardware Trojans. This paper introduces a new type of threat, the coherence-exploiting hardware Trojan. This 
Trojan can be maliciously implanted in master components in a system, and continuously injects memory read 
transactions on to bus or main interconnect. The injected traffic forces the eviction of cache lines, taking advantage 
of cache coherence protocols. This type of Trojans insidiously slows down the system performance, incurring 
Denial-of-Service (DoS) attack. We used Xilinx Zynq-7000 device to implement and evaluate the coherence-
exploiting Trojan. The malicious traffic was injected through the AXI ACP interface in Zynq-7000. Then, we 
collected the L2 cache eviction statistics with performance counters. The experiment results reveal the severe 
threats of the Trojan to the system performance.

1. Introduction

In tandem with the market demand and the Moore’s law, 
the hardware complexity of modern computers increases 
twice every 18 months. For example, the Intel’s latest 
processor, Haswell, boasts 1.7 billion transistors integrated in 
a single chip [6]. The number of engineers in a design team 
easily exceeds a few hundreds. The silicon product goes 
through many steps to be finally introduced to the market: 
Planning, Architecting Hardware Design, Manufacturing, and 
Validation. A few thousands of engineers would be involved 
in the whole processes. Thus, it would not be feasible to audit 
the work from every single engineer as long as the product 
functions as intended. It indicates that hardware components 
are not free from malicious modifications and insertions via 
evil insiders. Even worst, there are some speculations that 
some products are intentionally modified to include a kill 
switch [7].

In the stiff market competition, embedded device vendors 
are forced to reduce their production cost and the outsourcing 
of hardware components in a production has become a norm 
to reduce the time-to-market delay; There are an increasing 
number of companies that design and sell embedded gadgets 
but do not manufacture the hardware components by 
themselves. Even though a vendor may manufacture their 
devices on their own, it is more than likely that the hardware 
components in the devices are integrated with numerous IP 
cores outsourced or licensed by diverse third parties.
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Moreover, there is a report that counterfeit hardware 
components are used not only in social infrastructure (such 
as high-speed trains) but also in military products (such as 
fighter jets) [7].

This tendency has brought worries that outsourced 
components may not be very trustworthy. Potentially, anyone 
who are involved in the manufacturing process might make 
some malicious modifications to the original chip design, 
which is known as Hardware Trojan. The hardware Trojans 
are insidious and hard to detect much more than the software 
viruses, posing the critical threats to the system security. 
Even when detected, it is not possible to remove or cure the 
infected system since it is fused into the hardware 
components. Especially, when used in military products, the 
national security could be at risk, so extra care and screening
should be taken in adopting off-the-shore components.

Among the various types of hardware Trojans, this paper 
focuses on a Trojan incurring the Denial-of-Service (DoS) 
attack. More specifically, we investigate the malicious traffic 
injections from a master component in a hardware system, 
taking advantage of the memory coherence mechanisms. 
This type of attack does not alter or crash the system. It 
simply slows down the system performance, making it even 
harder to detect its existence. Nevertheless, it could make a 
critical impact on systems such as real-time systems or 
military product such as anti-missile and radar systems. We 
used Xilinx Zynq-7000 device on ZedBoard for the 
experiment to measure the impact of the coherence-
exploiting Trojan. We also suggest countermeasures to 
mitigate its impact on a system.
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The rest of this paper is organized as follows: Section 2
presents the recently proposed taxonomy and reviews various 
types of Trojans demonstrated in previous studies. Section 3
introduces some potential places in a chip where DoS attack 
can occur. Our experiment on coherence-exploiting Trojan is 
explained in Section 4. Section 5 gives an analysis on the 
results and is followed by Section 6 with the conclusion.

2. Related Work
The insertion, detection, prevention, and countermeasures

of hardware Trojans have become one of the most critical 
contemporary issues in IC security. There are numerous 
research works published in academia [1, 2, 3, 4, 5, 7]. Wang 
et al. [1] classified the hardware Trojans according to their 
types [2]. Karri et al. extended the Wang’s taxonomy [3]
based on the following five areas;

1) Insertion phase: The typical development cycle of an 
IC goes through from “Specification” phase to “Design” and 
then “Fabrication” followed by “Testing” and ends with 
“Assembly” phase. Although the malicious modification 
could possibly be inserted at any of these 5 phases, there are
few Trojans inserted at the phases other than “Design” stage. 
[3] demonstrated zero-overhead modification at the 
fabrication phase which enables privilege escalation attacks 
on modern microprocessors.

2) Abstraction level: Undesirable alteration to a circuit 
could be made at various hardware abstraction levels. At low 
levels the circuit can be modified maliciously by thinning a 
wire or weakening a transistor [1]. At high levels, Trojan 
horses can be implanted during preprocessing through
tampering with CAD tools or scripts [5].

3) Activation mechanism: Some attackers may want their 
Trojans to be activated only under a specific condition 
whereas the others want theirs to be always on. Trojan type 
VIII of [4] is designed to remain dormant until “Caps Lock”
or any undefined key is pressed while Trojan type III is 
always in operation.

4) Effects: Destructive behaviors and harmful influences
that maliciously-modified logics can introduce vary from a 
small downgrade in system performance to an extremely 
destructive one like Trojan type II in [4] which causes the 
whole system to stop working.

5) Location: A malicious circuit can also be 
characterized by the location where it is embedded.
Some Hardware Trojans such as Time-Bomb [8] could create 
the DoS effect in a system through the system crash. Our 
paper differs from the previous works in that the coherence-
exploiting Trojan insidiously slows down the system 
performance. To the best of our knowledge, this type of DoS 
attackingTrojan has not been investigated before.

3. Potential Places of DoS Attacks
The DoS attacks could happen anywhere in a chip if the 

implanted Trojan could influence the system performance in 

any form. This section introduces the most noticeable places 
of DoS attacking Trojans.

A. Memory Transactions
Accessing memory plays a critical role in system 

performance due to the performance gap from CPU. Thus, 
the malicious traffic injection could incur the system 
perturbation in a great scale. The multi-core configuration of 
the modern systems aggravates the threat of the malicious 
traffic injections because the number of master components 
in a system increases. There are two kinds of transactions to 
memory: Write and Read. Injecting a write transaction to 
memory could change the system state or would more likely 
incur the system crash if not carefully injected since the 
kernel and/or user space are most likely to be spoiled. Thus, 
the Trojan with write injection would more easily be 
discovered. Whereas, a read transaction is harmless and yet 
insidiously influences the system performance. Maliciously 
moving data (from memory to peripheral devices) around via 
Direct Memory Access (DMA) is one example of this type.

B. Coherence Transactions
Multi-core systems require cache coherence protocol for 

data consistency. A write transaction in one master which 
modifies shared data incurs cache line evictions in the others.
There are some cases where even a read traffic could trigger
coherence transactions in caches. For example, suppose a
dual-core system with private L1 caches and a shared L2 
cache which are strictly inclusive. If one of the cores injects a 
read transaction which causes a line marked shared to be 
replaced at the L2 cache, the victim will also be evicted from 
both L1 caches in order to satisfy the inclusive property. Our 
paper focuses on this type of Trojan, referred to as 
coherence-exploiting Trojan.

C. Interrupts
For computer operations, the interrupt is a fundamental 

mechanism for communication between CPU and peripheral 
devices. Falsely generating spurious interrupts from 
malicious peripherals perturbs the whole system, stopping 
CPU every now and then. This type of Trojans is also 
insidious and hard to detect.

(Figure 1) Potential places of DoS attacks 
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D. Network
Hardware Trojans could reside in network interface cards 

(NICs) to delay sending a packet to the network output, or 
periodically overrun the incoming packets in the local buffer, 
triggering retransmission of the packets. This type of Trojans 
are also stealthy.

(Figure 1) describes potential locations where DoS 
attacking Trojans can reside with possible paths the attacks 
can take place. Both are marked in red.

4. Experiment

A. Experimental Setup
We utilized Xilinx Zynq-7000 on ZedBoard to design, 

implant, and evaluate the coherence-exploiting Trojan. Zynq-
7000 is composed of two sections: Processing System (PS)
with two Cortex-A9s fused and Programmable Logic (PL) 
with a typical FPGA fabric. These two sections can 
communicate through several interfaces Zynq-7000 SoC 
provides. Statistics on L2 cache and system performance
were collected using the event monitoring bus of L2C-310
(AMBA Level 2 Cache Controller) and the performance 
monitoring unit (PMU) in Cortex-A9. Collected data were 
transmitted to PC via UART connection. The Xilinx Vivado 
2013.3 was used with SDK for the experiments.

B. Memory Hierarchy and Coherence Support of Zynq-7000
As mentioned, Zynq-7000 has two fused masters (Cortex-

A9). Each core has a separate 32KB L1 data cache and an 
instruction cache of the same size. The two processors share 
a unified 512KB L2 cache for instruction and data. Both L1 
and L2 caches have the line length of 32-bytes. Zynq-7000 
provides a master interface called accelerator coherency port 
(ACP). A master component designed in the PL can access 
the L2 cache through the ACP with 64-bit AXI interface. 
This AXI 64-bit port is channeled through Snoop Control 
Unit (SCU), providing an interface for the communication 
between the PL and the PS. The SCU maintains the data 

cache coherency between the two processors, the L2 cache, 
and system accelerators implemented through ACP interface.
For the experiment, we implemented a master component in 
the PL section, which continuously injects burst read 
transactions. The malicious master is connected to SCU
through the ACP interface, as shown in (Figure 2).

C. Hardware DoS Attack via ACP
1) Description of Attack
As explained in Section 3-B, continual read requests to a
specific set of the L2 cache might result in repeated 
occurrence of cache line replacement not only in the L2 
cache but in the L1 cache, if the caches are strictly 
inclusive. Once a line is evicted from the L1, CPU has to 
access memory to repopluate its cache. Since memory 
access takes a considerable amount of clock cycles, CPU 
has to sit and wait until the data is fetched.

2) Implementation
To effectively cause line evictions in the L2 cache, its
structural characteristics should be taken into account in 
Trojan design. With 512KB 8-way set-associative
structure, the size of each way is 64KB indicating that
each way can accomodate upto 2048 lines. Thus,
accessing an entire 1MB address space with a 32-byte 
stride will idealy make all 2048 lines (that is, whole 
512KB L2 cache) be evicted assuming the cache supports 
true LRU as its replacement strategy. We first 
implemented a Trojan (Tro8), which accesses a 512KB 
memory space. But since the L2 cache in Zynq-7000
employs pseudo-random victim selection policy, we 
designed another Trojan (Tro32) which accesses a larger 
space (2MB) in order to increase the chance of L2 cache 
line replacement.

5. Evaluation and Analysis

We designed two synthetic benchmarks: Fibonacci and 
memread. Fibonacci takes an integer n as an argument and 
returns the nth element in the Fibonacci sequence by
recursion. In our experiment we gave 40 as the input. 
Memread simply reads data from scattered memory spaces in 
a regular pattern. (Figure 4) shows the number of L2 cache 
line evictions while each of two synthetic benchmarks runs. 
We executed the benchmarks 10 times and computed the 
average with the minimum and maximum in the graphs. In 
(Figure 4) (b), the line eviction in the L2 cache dramatically 
increases from 0 to 15,218 on average, which would greatly 
disturb the CPU’s memory access for the benchmark 
execution. One more noticeable thing is that there is a 
significant difference in the number of L2 cache evictions in 
the two benchmarks. We strongly believe that it comes from 
these two factors: execution time and memory access pattern. 
Fibonacci takes relatively a short amount of time compared 
to memread. When it comes to the memory access, memread 
is much more memory-intensive. To make sure the effect of 
our Trojan, we measured the number of read requests sent to 
L2 cache for the two benchmarks. The result is summarized 
in <Table 1>.

(Figure 2) Memory hierarchy in Zynq-7000
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(Figure 4) The number of L2 cache eviction

<Table 1> The number of read requests to L2 cache
Trojans

Reqs/Cycle
No Tro Tro32

fibonacci 60 57,794,578 0.636

memread 311,137,489 1,010,678,207 0.643

Based on the number of L2 cache read requests, we 
derived the number of requests per cycle. The numbers in the 
second column with No Tro come from the legitimate CPU 
requests while executing the benchmarks. The numbers in the 
third column with Tro32 report the combined effect of the 
legitimate requests and Trojan requests. As shown in the last 
column of <Table 1>, there is no notable difference in the 
number of L2 read requests per cycle between the two 
benchmark runs. It implies that Tro32 injects malicious 
traffic consistently regardless of the characteristics of 
applications.

We then made some modifications in memread 
benchmark to shorten its runtime to be similar with that of 
fibonacci. <Table 2> shows the average number of L2 cache 
evictions so that the execution cycles are 90,862,698 for 
fibonacci and 90,594,632 for memread. Only 1.2 lines were 
evicted on average while executing fibonacci whereas there 
were 4,905 evictions in the case of memread. As Tro32
injects malicious traffic consistently in both cases, this 
implies that the impact of Tro32 is greatly influenced by  
the memory access pattern of applications.

<Table 2> Average number of L2 cache line evictions
Trojans

No Tro Tro32

fibonacci 0 1.2
modified-
memread 0 4,905

This experiment shows that malicious traffic injections 
can incur line evictions in the L2 cache. This undesirable 
occurrence of line evictions can be a great threat as it might 
cause significant performance degradation. To investigate the 
subsequent impacts of evictions, our next plan is to build up 
a real embedded system with Linux and/or Androids ported 
on. Standard benchmarks such as SPEC 2006 are going to be 
used to measure the impact with metrics like the number of 
L1 cache evictions and execution time.

One more thing we are going to focus on is the 
countermeasures to mitigate the impact of the malicious 
injections of read traffic. Implementing a programmable 
register between the ACP slave port and the Trojan can be a 
way to avoid malicious injections of read transactions 
through the ACP. Although the implanted Trojan cannot be 
removed from the chip, the user can avoid the attack by 
configuring this register to block the injection of traffic from 
the malicious hardware. The effectiveness of this method will 
be evaluated in further studies.

6. Conclusion

This paper introduced the coherence-exploiting hardware 
Trojan which can be maliciously implanted in master 
components, and continuously injects memory read 
transactions. This type of attack can be made very insidiously 
as read transactions do not alter or crash the system. The 
result of our experiment shows the injected traffic causes the 
eviction of cache lines. And this reveals severe threats of the 
Trojan to the system performance. To mitigate the impacts of 
this attack, a programmable register can be added between 
the ACP slave port and its master. This register provides a 
way for the user to avoid injection of read traffic from the 
hardware Trojan, although the Trojan is not removed from 
the chip.
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