
2015년 추계학술발표대회 논문집 제22권 제2호(2015. 10)

Trojan :
DoS

, ,

e-mail : nickong@korea.ac.kr

A Case Study on Hardware Trojan: Cache Coherence-Exploiting DoS
Attack

Sunhee Kong, Bo-Uye Hong and Taeweon Suh
Dept. of Computer Science and Engineering, Korea University

Abstract

The increasing complexity of integrated circuits and IP-based hardware designs have created the risk of
hardware Trojans. This paper introduces a new type of threat, the coherence-exploiting hardware Trojan. This
Trojan can be maliciously implanted in master components in a system, and continuously injects memory read
transactions on to bus or main interconnect. The injected traffic forces the eviction of cache lines, taking advantage
of cache coherence protocols. This type of Trojans insidiously slows down the system performance, incurring
Denial-of-Service (DoS) attack. We used Xilinx Zynq-7000 device to implement and evaluate the coherence-
exploiting Trojan. The malicious traffic was injected through the AXI ACP interface in Zynq-7000. Then, we
collected the L2 cache eviction statistics with performance counters. The experiment results reveal the severe
threats of the Trojan to the system performance.

1. Introduction

In tandem with the market demand and the Moore’s law,
the hardware complexity of modern computers increases
twice every 18 months. For example, the Intel’s latest
processor, Haswell, boasts 1.7 billion transistors integrated in
a single chip [6]. The number of engineers in a design team
easily exceeds a few hundreds. The silicon product goes
through many steps to be finally introduced to the market:
Planning, Architecting Hardware Design, Manufacturing, and
Validation. A few thousands of engineers would be involved
in the whole processes. Thus, it would not be feasible to audit
the work from every single engineer as long as the product
functions as intended. It indicates that hardware components
are not free from malicious modifications and insertions via
evil insiders. Even worst, there are some speculations that
some products are intentionally modified to include a kill
switch [7].

In the stiff market competition, embedded device vendors
are forced to reduce their production cost and the outsourcing
of hardware components in a production has become a norm
to reduce the time-to-market delay; There are an increasing
number of companies that design and sell embedded gadgets
but do not manufacture the hardware components by
themselves. Even though a vendor may manufacture their
devices on their own, it is more than likely that the hardware
components in the devices are integrated with numerous IP
cores outsourced or licensed by diverse third parties.

This work was supported by Basic Science Research Program through the
National Research Foundation of Korea (NRF) funded by the Ministry of
Education (NRF-2012R1A1A2008231)

Moreover, there is a report that counterfeit hardware
components are used not only in social infrastructure (such
as high-speed trains) but also in military products (such as
fighter jets) [7].

This tendency has brought worries that outsourced
components may not be very trustworthy. Potentially, anyone
who are involved in the manufacturing process might make
some malicious modifications to the original chip design,
which is known as Hardware Trojan. The hardware Trojans
are insidious and hard to detect much more than the software
viruses, posing the critical threats to the system security.
Even when detected, it is not possible to remove or cure the
infected system since it is fused into the hardware
components. Especially, when used in military products, the
national security could be at risk, so extra care and screening
should be taken in adopting off-the-shore components.

Among the various types of hardware Trojans, this paper
focuses on a Trojan incurring the Denial-of-Service (DoS)
attack. More specifically, we investigate the malicious traffic
injections from a master component in a hardware system,
taking advantage of the memory coherence mechanisms.
This type of attack does not alter or crash the system. It
simply slows down the system performance, making it even
harder to detect its existence. Nevertheless, it could make a
critical impact on systems such as real-time systems or
military product such as anti-missile and radar systems. We
used Xilinx Zynq-7000 device on ZedBoard for the
experiment to measure the impact of the coherence-
exploiting Trojan. We also suggest countermeasures to
mitigate its impact on a system.

- 740 -

2015년 추계학술발표대회 논문집 제22권 제2호(2015. 10)

The rest of this paper is organized as follows: Section 2
presents the recently proposed taxonomy and reviews various
types of Trojans demonstrated in previous studies. Section 3
introduces some potential places in a chip where DoS attack
can occur. Our experiment on coherence-exploiting Trojan is
explained in Section 4. Section 5 gives an analysis on the
results and is followed by Section 6 with the conclusion.

2. Related Work
The insertion, detection, prevention, and countermeasures

of hardware Trojans have become one of the most critical
contemporary issues in IC security. There are numerous
research works published in academia [1, 2, 3, 4, 5, 7]. Wang
et al. [1] classified the hardware Trojans according to their
types [2]. Karri et al. extended the Wang’s taxonomy [3]
based on the following five areas;

1) Insertion phase: The typical development cycle of an
IC goes through from “Specification” phase to “Design” and
then “Fabrication” followed by “Testing” and ends with
“Assembly” phase. Although the malicious modification
could possibly be inserted at any of these 5 phases, there are
few Trojans inserted at the phases other than “Design” stage.
[3] demonstrated zero-overhead modification at the
fabrication phase which enables privilege escalation attacks
on modern microprocessors.

2) Abstraction level: Undesirable alteration to a circuit
could be made at various hardware abstraction levels. At low
levels the circuit can be modified maliciously by thinning a
wire or weakening a transistor [1]. At high levels, Trojan
horses can be implanted during preprocessing through
tampering with CAD tools or scripts [5].

3) Activation mechanism: Some attackers may want their
Trojans to be activated only under a specific condition
whereas the others want theirs to be always on. Trojan type
VIII of [4] is designed to remain dormant until “Caps Lock”
or any undefined key is pressed while Trojan type III is
always in operation.

4) Effects: Destructive behaviors and harmful influences
that maliciously-modified logics can introduce vary from a
small downgrade in system performance to an extremely
destructive one like Trojan type II in [4] which causes the
whole system to stop working.

5) Location: A malicious circuit can also be
characterized by the location where it is embedded.
Some Hardware Trojans such as Time-Bomb [8] could create
the DoS effect in a system through the system crash. Our
paper differs from the previous works in that the coherence-
exploiting Trojan insidiously slows down the system
performance. To the best of our knowledge, this type of DoS
attackingTrojan has not been investigated before.

3. Potential Places of DoS Attacks
The DoS attacks could happen anywhere in a chip if the

implanted Trojan could influence the system performance in

any form. This section introduces the most noticeable places
of DoS attacking Trojans.

A. Memory Transactions
Accessing memory plays a critical role in system

performance due to the performance gap from CPU. Thus,
the malicious traffic injection could incur the system
perturbation in a great scale. The multi-core configuration of
the modern systems aggravates the threat of the malicious
traffic injections because the number of master components
in a system increases. There are two kinds of transactions to
memory: Write and Read. Injecting a write transaction to
memory could change the system state or would more likely
incur the system crash if not carefully injected since the
kernel and/or user space are most likely to be spoiled. Thus,
the Trojan with write injection would more easily be
discovered. Whereas, a read transaction is harmless and yet
insidiously influences the system performance. Maliciously
moving data (from memory to peripheral devices) around via
Direct Memory Access (DMA) is one example of this type.

B. Coherence Transactions
Multi-core systems require cache coherence protocol for

data consistency. A write transaction in one master which
modifies shared data incurs cache line evictions in the others.
There are some cases where even a read traffic could trigger
coherence transactions in caches. For example, suppose a
dual-core system with private L1 caches and a shared L2
cache which are strictly inclusive. If one of the cores injects a
read transaction which causes a line marked shared to be
replaced at the L2 cache, the victim will also be evicted from
both L1 caches in order to satisfy the inclusive property. Our
paper focuses on this type of Trojan, referred to as
coherence-exploiting Trojan.

C. Interrupts
For computer operations, the interrupt is a fundamental

mechanism for communication between CPU and peripheral
devices. Falsely generating spurious interrupts from
malicious peripherals perturbs the whole system, stopping
CPU every now and then. This type of Trojans is also
insidious and hard to detect.

(Figure 1) Potential places of DoS attacks

- 741 -

2015년 추계학술발표대회 논문집 제22권 제2호(2015. 10)

D. Network
Hardware Trojans could reside in network interface cards

(NICs) to delay sending a packet to the network output, or
periodically overrun the incoming packets in the local buffer,
triggering retransmission of the packets. This type of Trojans
are also stealthy.

(Figure 1) describes potential locations where DoS
attacking Trojans can reside with possible paths the attacks
can take place. Both are marked in red.

4. Experiment

A. Experimental Setup
We utilized Xilinx Zynq-7000 on ZedBoard to design,

implant, and evaluate the coherence-exploiting Trojan. Zynq-
7000 is composed of two sections: Processing System (PS)
with two Cortex-A9s fused and Programmable Logic (PL)
with a typical FPGA fabric. These two sections can
communicate through several interfaces Zynq-7000 SoC
provides. Statistics on L2 cache and system performance
were collected using the event monitoring bus of L2C-310
(AMBA Level 2 Cache Controller) and the performance
monitoring unit (PMU) in Cortex-A9. Collected data were
transmitted to PC via UART connection. The Xilinx Vivado
2013.3 was used with SDK for the experiments.

B. Memory Hierarchy and Coherence Support of Zynq-7000
As mentioned, Zynq-7000 has two fused masters (Cortex-

A9). Each core has a separate 32KB L1 data cache and an
instruction cache of the same size. The two processors share
a unified 512KB L2 cache for instruction and data. Both L1
and L2 caches have the line length of 32-bytes. Zynq-7000
provides a master interface called accelerator coherency port
(ACP). A master component designed in the PL can access
the L2 cache through the ACP with 64-bit AXI interface.
This AXI 64-bit port is channeled through Snoop Control
Unit (SCU), providing an interface for the communication
between the PL and the PS. The SCU maintains the data

cache coherency between the two processors, the L2 cache,
and system accelerators implemented through ACP interface.
For the experiment, we implemented a master component in
the PL section, which continuously injects burst read
transactions. The malicious master is connected to SCU
through the ACP interface, as shown in (Figure 2).

C. Hardware DoS Attack via ACP
1) Description of Attack
As explained in Section 3-B, continual read requests to a
specific set of the L2 cache might result in repeated
occurrence of cache line replacement not only in the L2
cache but in the L1 cache, if the caches are strictly
inclusive. Once a line is evicted from the L1, CPU has to
access memory to repopluate its cache. Since memory
access takes a considerable amount of clock cycles, CPU
has to sit and wait until the data is fetched.

2) Implementation
To effectively cause line evictions in the L2 cache, its
structural characteristics should be taken into account in
Trojan design. With 512KB 8-way set-associative
structure, the size of each way is 64KB indicating that
each way can accomodate upto 2048 lines. Thus,
accessing an entire 1MB address space with a 32-byte
stride will idealy make all 2048 lines (that is, whole
512KB L2 cache) be evicted assuming the cache supports
true LRU as its replacement strategy. We first
implemented a Trojan (Tro8), which accesses a 512KB
memory space. But since the L2 cache in Zynq-7000
employs pseudo-random victim selection policy, we
designed another Trojan (Tro32) which accesses a larger
space (2MB) in order to increase the chance of L2 cache
line replacement.

5. Evaluation and Analysis

We designed two synthetic benchmarks: Fibonacci and
memread. Fibonacci takes an integer n as an argument and
returns the nth element in the Fibonacci sequence by
recursion. In our experiment we gave 40 as the input.
Memread simply reads data from scattered memory spaces in
a regular pattern. (Figure 4) shows the number of L2 cache
line evictions while each of two synthetic benchmarks runs.
We executed the benchmarks 10 times and computed the
average with the minimum and maximum in the graphs. In
(Figure 4) (b), the line eviction in the L2 cache dramatically
increases from 0 to 15,218 on average, which would greatly
disturb the CPU’s memory access for the benchmark
execution. One more noticeable thing is that there is a
significant difference in the number of L2 cache evictions in
the two benchmarks. We strongly believe that it comes from
these two factors: execution time and memory access pattern.
Fibonacci takes relatively a short amount of time compared
to memread. When it comes to the memory access, memread
is much more memory-intensive. To make sure the effect of
our Trojan, we measured the number of read requests sent to
L2 cache for the two benchmarks. The result is summarized
in <Table 1>.

(Figure 2) Memory hierarchy in Zynq-7000

- 742 -

2015년 추계학술발표대회 논문집 제22권 제2호(2015. 10)

(Figure 4) The number of L2 cache eviction

<Table 1> The number of read requests to L2 cache
Trojans

Reqs/Cycle
No Tro Tro32

fibonacci 60 57,794,578 0.636

memread 311,137,489 1,010,678,207 0.643

Based on the number of L2 cache read requests, we
derived the number of requests per cycle. The numbers in the
second column with No Tro come from the legitimate CPU
requests while executing the benchmarks. The numbers in the
third column with Tro32 report the combined effect of the
legitimate requests and Trojan requests. As shown in the last
column of <Table 1>, there is no notable difference in the
number of L2 read requests per cycle between the two
benchmark runs. It implies that Tro32 injects malicious
traffic consistently regardless of the characteristics of
applications.

We then made some modifications in memread
benchmark to shorten its runtime to be similar with that of
fibonacci. <Table 2> shows the average number of L2 cache
evictions so that the execution cycles are 90,862,698 for
fibonacci and 90,594,632 for memread. Only 1.2 lines were
evicted on average while executing fibonacci whereas there
were 4,905 evictions in the case of memread. As Tro32
injects malicious traffic consistently in both cases, this
implies that the impact of Tro32 is greatly influenced by
the memory access pattern of applications.

<Table 2> Average number of L2 cache line evictions
Trojans

No Tro Tro32

fibonacci 0 1.2
modified-
memread 0 4,905

This experiment shows that malicious traffic injections
can incur line evictions in the L2 cache. This undesirable
occurrence of line evictions can be a great threat as it might
cause significant performance degradation. To investigate the
subsequent impacts of evictions, our next plan is to build up
a real embedded system with Linux and/or Androids ported
on. Standard benchmarks such as SPEC 2006 are going to be
used to measure the impact with metrics like the number of
L1 cache evictions and execution time.

One more thing we are going to focus on is the
countermeasures to mitigate the impact of the malicious
injections of read traffic. Implementing a programmable
register between the ACP slave port and the Trojan can be a
way to avoid malicious injections of read transactions
through the ACP. Although the implanted Trojan cannot be
removed from the chip, the user can avoid the attack by
configuring this register to block the injection of traffic from
the malicious hardware. The effectiveness of this method will
be evaluated in further studies.

6. Conclusion

This paper introduced the coherence-exploiting hardware
Trojan which can be maliciously implanted in master
components, and continuously injects memory read
transactions. This type of attack can be made very insidiously
as read transactions do not alter or crash the system. The
result of our experiment shows the injected traffic causes the
eviction of cache lines. And this reveals severe threats of the
Trojan to the system performance. To mitigate the impacts of
this attack, a programmable register can be added between
the ACP slave port and its master. This register provides a
way for the user to avoid injection of read traffic from the
hardware Trojan, although the Trojan is not removed from
the chip.

References
[1] X. Wang, M. Tehranipoor, and J. Plusquellic,

‘‘Detecting Malicious Inclusions in Secure Hardware:
Challenges and Solutions,’’ Proc. IEEE Int’l Workshop
Hardware-Oriented Security and Trust (HOST 08), IEEE
CS Press, 2008, pages. 15-19.

[2] Tehranipoor, M; Koushanfar, F. IEEE DESIGN & TEST
OF COMPUTERS; JAN-FEB, 2010; 27; 1; p10-p25I.S.
Jacobs and C.P. Bean, “Fine particles, thin films and
exchange anisotropy,” in Magnetism, vol. III, G.T. Rado
and H. Suhl, Eds. New York: Academic, 1963, pages.
271-350.

[3] N Tsoutsos, and M Maniatakos, “Fabrication attacks:
Zero-overhead malicious modifications enabling modern
microprocessor privilege escalation”. Emerging Topics
in Computing, IEEE Transactions on
(Volume:2 , Issue: 1), pages 81-93, March 2014.

[4] Y. Jin, N. Kupp, and Y. Makris, “Experiences in
hardware trojan design and implementation.” In Proc.
IEEE Workshop on Hardware-Oriented Security and
Trust, pages 50–57, June 2009.

[5] J. A. Roy, F. Koushanfar, and I. L. Markov. Extended
abstract: Circuit cad tools as a security threat. In Proc.
IEEE Workshop on Hardware-Oriented Security and
Trust, pages 65–66, June 2008.

[6] Intel Haswell, http://www.intel.com/.
[7] Sally Adee, “The Hunt for the Kill Switch”. IEEE

Spectrum. Vol. 45, Issue 5, pp 34-39, May 2008.
[8] Celia Gorman, “Counterfeit Chips on the Rise”, IEEE

Spectrum. May 2012.

- 743 -

