친환경 고에너지 물질로서의 금속-질소 클러스터 화합물의 안정성 예측

최창혁, 정유성* 대전시 유성구 대학로 291, KAIST EEWS 대학원, 305-701. E-mail: chheok@kaist.ac.kr

Polynitrogen Compounds (PNC)는 질소만으로 이루어진 물질을 칭하며, 주로 질소간의 단일 결 합과 이중결합으로 이루어져 있다. 질소 간 단일결합에너지 38.4kcal/mole에 비해 유난히 큰 229kcal/mole의 삼중결합 에너지 덕택에 PNC는 고에너지 물질로 큰 각광을 받고 있다. PNC는 합성과정이 큰 흡열반응으로 실험이 까다로워 이론적인 연구가 많이 진행되어왔다. 그 중에서 고 리형태의 N₅⁻가 안정할 것으로 예측되며, 실험적으로도 발견되었다. N₅⁻를 안정화시키기 위해 많 은 연구가 진행되었으며 그 중 하나가 금속과의 결합을 통한 화합물의 안정화이다. 본 연구에서 는 N₅⁻와 Cyclopentadienyl(C₅H₅⁻)이 전자구조나 기하학적 구조가 매우 유사함에 착안하여 이미 상대적으로 많은 합성이 보고되어 있는 M(C₅H₅)₃, M(C₅H₅)₄의 전이금속 M구조에 대하여 아직 발 견되지 않은 M(N₅)₃, M(N₅)₄ 화합물의 구조와 열역학적 안정성을 알아보도록 한다. 본 연구에서 찾아진 Zr(C₅H₅)₄은 현재까지 실험적으로 보고된 M(C₇H₇)(C₅H₅) 클러스터 구조에 비해 질소함유량 이 약 67% 더 높다.

핵심어 : Polyntirogen Compounds, DFT, Binding Energy, 고에너지 물질, 금속-질소 클러스터 화합물

서론

Polynitrogen Compounds (PNC)는 N₃, N₄, N₅ 와 같이 질소의 동소체처럼 질소원자 만으로 이 루어진 화합물을 말한다. PNC의 가장 큰 특징은 질소간의 결합이 단일결합이나 이중결합으로 이 루어져 있는 것으로, 질소분자의 삼중결합에 비 해 매우 불안정하다. 따라서 PNC는 분해 과정에 서 삼중결합의 안정한 질소 분자 (N₂)로 분해되 면서 많은 에너지가 발생한다. 일반적으로 질소 삼중결합의 원자간 결합에너지는 경우 229kcal/mole, 이중결합의 경우 약 100kcal/mole, 단일결합의 경우 약 38.4kcal/mole을 가진다.¹ 이 처럼 질소의 유난히 안정한 삼중결합의 특성으로 PNC는 분해과정에서 매우 큰 에너지를 발산하게

된다. 이러한 에너지적인 측면뿐만 아니라 질소 는 대기 중에 풍부하여 원료고갈의 위험도 없으 며, PNC가 분해되어도 생성물이 질소분자이므로 환경적인 문제 또한 적기에 PNC는 차세대 고에 너지 물질로 큰 각광을 받고 있다.2 이러한 질소간 결합의 특성 때문에 질소간의 단 일 혹은 이중결합을 형성하는 과정은 매우 큰 흡 열반응이다. 따라서 PNC는 여러 장점에도 불구 하고 합성과정이 까다로워 큰 난항을 겪고 있다. 실험적으로는 잘 알려져 있는 azide(N3⁻)를 제외 하고 현재까지 N₃, N₃⁺, N₄, N₅⁺, N₅⁻가 실험적으 로 발견되었다.³⁻⁵ 이 중에서도 Cyclopentadienyl (C₅H₅⁻)와 오각형 유사한 고리형태의 pentazolate(N5⁻)가 안정할 것이라고 많은 예측되 었다.⁶ N₅-와 같이 음전하를 띠는 N_n9형태의 물질

은 금속과의 결합으로 안정해질 수 있기에 화학 자들이 Metallocene 혹은 이와 유사한 구조로 금 속-질소 클러스터 화합물을 연구해왔다.⁷

기존의 금속-질소 클러스터 화합물에 관한 연구 는 주로 금속과 1~2개의 pentazolate와의 결합 에 관한 연구였다. 본 연구에서는 C₅H₅-와 N₅-가 오각형의 기하학적 구조도 같으며 6π system으 로 isoelectronic하여 유사하다는 점에 착안하여 접근하려 한다. 이미 합성이 된 유기금속 화합물 중 M(C₅H₅)₃, M(C₅H₅)₄의 구조를 갖는 중심금속 M에 대하여 아직 합성이 되지 않은 M(N₅)₃, M(N₅)₄의 안정성을 시험해본다. 3주기 전이금속 Sc, Y에 관하여 M(C₅H₅)₃의 구조가, 4주기 전이금 속 Ti, Zr에 관하여 M(C₅H₅)₄의 구조가 합성이 되 었다.⁸⁻¹⁰ 따라서 본 연구에서 Sc(N₅)₃, Y(N₅)₃, Ti(N₅)₄, Zr(N₅)₄의 안정성을 연구해보기로 한다. 현재까지 양자계산을 통하여 안정할 것이라 예상 되는 금속-질소 클러스터 화합물의 구조 중 M(N₅)(N₇)이 금속과 질소의 비가 1:12로 가장 높

을 것으로 보인다.⁷ 본 연구의 경우 금속과 질소 의 비가 1:15, 1:20이므로 그 위치가 높을 것으로 예상된다. 여러 분해과정이 존재할 수 있기 때문 에 분해과정에 관한 반응속도론적인 안정성은 고 려하지 않기로 하며, 화합물의 구조와 금속과의 상호작용으로 인한 열역학적인 관점의 접근을 통 해 안정성을 연구해보기로 한다.

이론 및 계산방법

본 연구에서의 모든 계산은 Q-Chem Quantum Chemistry Package와 Edison에서 제공하는 GAMESS 프로그램을 이용하였다. 반응물과 생성 물의 모든 구조는 B3LYP functional을 이용해 구 조 최적화와 Single-point energy계산을 하였다. 별도의 명시가 없는 경우 6-31G^{*} basis set을 이 용하였다. 전이금속 Y와 Zr에 관해서는 LANL2DZ basis set과 ECP로 계산하였다. 최적화된 구조에 대해서는 Frequency계산을 통하여 Local minima 임을 확인하였다.

그림 11. 최적화된 M(N5)3와 M(N5)4의 구조

결과 및 토의

구조최적화와 Frequency계산을 통하여 Sc(N₅)₃, Y(N₅)₃, Ti(N₅)₄, Zr(N₅)₄ 모두 local minima임을 확 인하였다. 최적화된 구조를 아래 그림1에 나타내 었다. 일반적인 C₅H₅와 전이금속과의 η^5 형태의 결합과 달리 N₅-와는 η^2 형태의 결합을 할 것으 로 예상된다. 중심금속과 질소간의 거리가 조금 씩 다르지만 유사하기에 편의를 위해 일부는 생 략하고 주요한 결합길이만을 표1에 나타내었다. 금속과 결합된 N₅에서 N-N 결합길이를 비교하 면 최소 1.3087 Å에서 최대 1.3504 Å의 결합길이 를 갖는다. 이 길이는 일반적인 질소의 단일결합 길이 1.45 Å와 이중결합길이 1.25 Å의 사이에 있 는 값으로 결합길이만 고려했을 때 금속과 결합 하여도 어느 정도 공명구조를 가짐을 예상해 볼 수 있다. 같은 레벨에서 구조최적화를 한 N₅-의 경우 질소간 결합길이가 1.330 Å이었다. 금속과 N2, N3와의 결합으로 인하여 Ti(N₅)₄를 제외하고 N2-N3간의 결합길이만 1.330 Å에 비해 증가하고 나머지 질소 간 결합길이는 감소하였다. 일반적 으로 결합길이가 길어질수록 결합의 세기가 약해 지는 경향이 있다.

표1. 분자 내 주요 결합길이(Å)

	$Sc(N_5)_3$	Y(N ₅) ₃	Ti(N ₅) ₄	$Zr(N_5)_4$	
M-N2	2.1359	2.3251	2.1149	2.2519	
M-N3	2.1350	2.3248	2.0235	2.2183	
N2-N3	1.3463	1.3504	1.3217	1.3351	
N3-N4	1.3088	1.3088	1.3144	1.3157	
N4-N5	1.3260	1.3257	1.3217	1.3194	
N5-N6	1.3264	1.3257	1.3331	1.3325	
N6-N2	1.3087	1.3087	1.3091	1.3057	

N2-N3의 결합길이의 증가로 볼 때 금속과 결합 된 N₅-가 분해될 때 N2-N3의 결합이 가장 먼저 끊어질 가능성이 높다. 본 연구에서 분해과정을 다루지는 않았지만 이를 분해 경로에 참조할 수 있을 것이다.

금속과 N_5 의 상호작용을 통해 얼마나 열역학적 으로 안정한지 알아보기 위해 Binding Energy를 계산하였다. Binding Energy, ΔE 는 일반적으로 Complex의 에너지에서 금속이온과 리간드의 에 너지 합을 뺀 것으로 나타낸다. 본 연구에서도 화합물이 금속양이온과 N_5 로 분해되는 과정의 에너지를 계산하였다. 표2에 Binding Energy와 Complex내의 금속 양이온의 Mulliken Atomic Charge와 Complex형성 전 후 금속의 Charge 변 화 량을 나타내었다.

표2. Binding Energy ΔE (kcal/mole)와 금속의 전 하량(q)와 Complex 형성 전후 금속의 전하량 변화(Δq)

species	ΔE	q	Δq
$Sc(N_5)_3$	-1094.2	1.46	1.54
Y(N ₅) ₃	-964.7	1.59	1.41
Ti(N ₅) ₄	-2158.8	1.47	2.53
$Zr(N_5)_4$	-1836.4	1.97	2.03

Binding Energy의 관점에서 볼 때 금속양이온과 N₅⁻가 따로 있을 때 보다 Complex를 형성하므로 열역학적으로 훨씬 더 안정해질 수 있음을 알 수 있다. 금속양이온이 리간드와 상호작용할 때 둘 사이에서 Charge redistribution이 일어나게 된다. 이 둘의 상호작용이 강할수록 전하분포가 더 많 이 바뀌게 된다.¹¹ Sc³⁺와 Y³⁺보다 결합 전에는 +3의 전하량을 가졌으나 결합을 형성하므로 Sc³⁺의 경우 1.46, Y³⁺의 경우 1.59로 감소하였다. 따라서 변화량이 1.54로 더 큰 Sc³⁺의 경우 결합 으로 전하분포가 더 바뀌었다. 변화량이 더 큰 Sc³⁺가 Y³⁺보다 N⁵⁻와 더 강한 상호작용을 할 것 으로 예측되며 이를 통해 Sc(N₅)₃의 Binding Energy가 Y(N₅)₃에 비해 큰 것을 대략적으로 설 명할 수 있다. 마찬가지로 Ti(N₅)₄와 Zr(N₅)₄의 Binding Energy 차이도 전하량의 변화에 기인한 것으로 보인다.

결론

본 연구를 통해 아직 합성이 되지 않은 Sc(N₅)₃, Y(N₅)₃, Ti(N₅)₄, Zr(N₅)₄의 구조와 열역학적 인 안정성에 관하여 주로 알아보았다. 기존에 보 고된 클러스터 화합물에 비해 본 연구에서 찾아 진 클러스터 화합물의 질소 함유량이 더 높기에 많은 기대가 될 것으로 예상된다. 분해과정이 다 양할 수 있어 분해과정을 고려하지는 않았지만, 구조최적화 계산을 통한 분자의 결합길이를 통해 N2-N3의 결합이 자연분해 과정에서 가장 먼저 해리될 것으로 예상되어 분해과정에 관한 단서를 얻을 수 있었다. 또한 Binding Energy와 Charge distribution을 통하여 금속과 N₅-의 상호작용 정 도를 알 수 있었다. Frequency 계산을 통하여 local minima임을 확인하였지만 위의 정보만으로 는 화합물의 존재성을 판단하긴 힘들다. 이와 같 은 접근 방법이 금속-질소 클러스터 화합물에서 금속과 질소 클러스터 화합물 사이의 상호작용, 열역학적 안정성, 분해과정에 관한 메커니즘과 반응속도론적 안정성에 관한 연구에 도움이 되길 바라며 앞으로 추가적인 연구를 더 할 것이다.

감사의 말

본 논문은 2015년도 정부(미래창조과학부)의 재원으로 한국연구재단 첨단 사이언스·교육 허브 개발 사업의 지원을 받아 수행된 연구임(No. NRF-2012-M3C1A6035357)

참고문헌

- 1. Zarko, V. E. Fiz. Goreniya Vzryva 2010, 46, 3-16.
- Dyke, J. M.; Jonathan, N. B. H.; Lewis, A. E.; Morris, A. *Mol. Phys.* **1982**, *47*, 1231-40.
- 3. Samartzis, P. C.; Wodtke, A. M. Int. Rev. Phys.

Chem. 2006, 25, 527-552.

- Vij, A.; Pavlovich, J. G.; Wilson, W. W.; Vij, V.; Christe, K. O. *Angew. Chem. Int. Ed.* **2002**, *41*, 3051-3054.
- Vij, A.; Wilson, W. W.; Vij, V.; Tham, F. S.; Sheehy, J. A.; Christe, K. O. *J. Am. Chem. Soc.* 2001, *123*, 6308-6313.
- 6. Rahm, M.; Brinck, T. *Chem. Eur. J.* **2010**, *16*, 6590-6600.
- 7. Gagliardi, L.; Pyykkoe, P. J Phys Chem A 2002, 106, 4690-4694.
- Adam, M.; Behrens, U.; Fischer, R. D. Acta Crystallogr. , Sect. C: Cryst. Struct. Commun. 1991, C47, 968-71.
- 9. Atwood, J. L.; Smith, K. D*J. Amer. Chem. Soc.* **1973**, *95*, 1488-91.
- 10. Calderazzo, F.; Englert, U.; Pampaloni, G.; Tripepi, G. *J. Organomet. Chem.* **1998**, *555*, 49-56.
- 11. Diao, K.; Wang, H.; Ge, Q. *Struct. Chem.* **2007**, *18*, 875-882.