Outflow properties of DIGIT embedded sources

  • Kang, Seonmi (School of Space Research, Kyung Hee University) ;
  • Lee, Jeong-Eun (School of Space Research, Kyung Hee University) ;
  • Choi, Minho (Korea Astronomy and Space Science Institute) ;
  • Evans II, Neal J. (Department of Astronomy, the University of Texas at Austin) ;
  • Dunham, Michael M. (Harvard-Smithsonian Center for Astronomy)
  • Published : 2015.04.10

Abstract

We present a study of outflows on 24 embedded young stellar objects selected from the source list of the Dust, Ice, and Gas in Time (DIGIT) Herschel key program. To study the relation between the CO outflows observed in low-J transitions and the properties of protostars more consistently with a homogeneous data set, we mapped the CO outflows of the selected targets in the J = 1-0 and J = 2-1 lines with two Korean telescopes (SRAO and TRAO). We compare CO outflow force ($F_{CO}$) with the bolometric luminosity, ($L_{bol}$) bolometric temperature, and the FIR molecular line luminosities of CO, $H_2O$, OH, and [O I] detected by the Herschel-PACS observations. We find that $F_{CO}$ of J = 1-0 is greater than that of 2-1 by a factor of ~ 2. The well known correlation between $F_{CO\;2-1}$ and $L_{bol}$ is not very evident in our sample as a whole, but they show a rather strong correlation when IRAM 04191+1522 is excluded. IRAM 04191+1522 has relatively high $F_{CO\;2-1}$ in spite of its low $L_{bol}$. This object is a well-known VeLLO, which is believed in the quiescent phase of the episodic mass accretion in the embedded stage. $L_{bol}$ traces a current accretion, but $F_{CO\;2-1}$ traces accretion happened long ago. Therefore, the low-$L_{bol}$ with the high-$F_{CO\;2-1}$ can be explained by the episodic accretion. $F_{CO\;2-1}$ shows little correlation with individual FIR line luminosities of CO, $H_2O$, OH, while [O I] and total FIR line luminosity seem to have correlations with $F_{CO\;2-1}$. This result is interpreted as the accretion energy deposits on species differently depending on shock properties, but the total FIR line luminosity sums the total accretion energy dispersed to different species.

Keywords