
2014년 한국방송공학회 하계학술대회 

영상처리 가속을 위한 CGRA compilation 속도 향상 
 

김원섭, *최윤서, **김재현 

삼성전자 DMC R&D Center, *삼성전자 SAIT, ** 삼성전자 DMC R&D Center 

wonsub79.kim@samsung.com, *yoons.choi@samsung.com, **jhgim@samsung.com 

 

CGRA Compilation Boost up for Acceleration of Graphics 

 

Wonsub Kim  *Yoonseo Choi ** Jaehyun Kim 

Samsung Electronics DMC R&D Center *Samsung Electronics SAIT **Samsung 

Electronics DMC R&D Center 

 

요   약 
 

Coarse-grained reconfigurable architectures (CGRAs) present a potential of high compute throughput 

with energy efficiency. A CGRA consists of an array of functional units (FU), which communicate with 

each other through an interconnect network containing transmission nodes and register files. To achieve 

high performance from the software solutions mapped onto CGRAs, modulo scheduling of loops is 

generally employed. One of the key challenges in modulo scheduling for CGRAs is to explicitly handle 

routings of operands from a source to a destination operations through various routing resources. Existing 

modulo schedulers for CGRAs are slow because finding a valid routing is generally a searching problem 

over a large space, even with the guidance of well-defined cost metrics. Applications in traditional 

embedded multimedia domains are regarded relatively tolerant to a slow compile time in exchange of a 

high quality solution. However, many rapidly growing domains of applications, such as 3D graphics, require 

a fast compilation. Entrances of CGRAs to these domains have been blocked mainly due to its long compile 

time. We attack this problem by utilizing patternized routes, for which resources and time slots for a 

success can be estimated in advance when a source operation is placed. By conservatively reserving 

predefined resources at predefined time slots, future routings originated from the source operation are 

guaranteed. Experiments on a real-world 3D graphics benchmark suite show that our scheduler improves 

the compile time up to 6000 times while achieving average 70% throughputs of the state-of-art CGRA 

modulo scheduler, edge-centric modulo scheduler (EMS)..  

 

1. INTRODUCTION 

 
CGRAs generally consist of an array of a large number 

of functional units (FU) connected by an interconnect 

network. The key challenge in deploying CGRAs is compiler 

scheduling technology that can effi ciently map software 

solutions to hardware so that high performance from many 

FUs can be achieved. To make a good use of CGRA, modulo 

scheduling [3] of loops is generally employed. There have 

been research efforts for effi cient modulo scheduling 

technology for CGRA, which are proven to be useful in 

application domains, such as audio/video and image 

processing [1][2] . 

Although the strength of CGRAs is clear in embedded 

multimedia domains, its long compilation time is a visible 

weakness, which adversely affects time-to-market cost 

and developing productivity. Moreover, a slow compilation 

is one of the main obstacles to wider acceptance of it by 

other domains. To become a multi-purpose accelerator in 

various domains including web browsing,gaming, user 

interfaces and 3D graphics, a fast compilation is a requisite. 

To avoid a long compile time, we simplify routing 

stages in CGRA modulo scheduling so that it can be 

effectively integrated into the placement step. A placement 

option is taken only if it is guaranteed not to be invalidated 

due to later routings. Our scheduler attains this trait by 

using limited routing patterns called as qualified patterns. 

The patterns have following characteristics such that the 

availability of all resources within a routing path is quickly 

verifi able and can cover most of the routing requirements 

to schedule a DFG. 

 To the best of our knowledge, our technique is the 

fi rst CGRA modulo scheduling technique, which can 

effectively converge to a polynomial time complexity. Our 

scheduler is faster by 300 times on average, and up to 

6000 times within the average performance degradation of 

30% comparing to EMS. In some programs, the 

performance loss is none. 



2014년 한국방송공학회 하계학술대회 

 
Fig. 1. Target CGRA overview 

 

 

2. CORE CONCEPTS 

 
Our target CGRA is shown in the Fig. 1. The target 

CGRA has a 4x4 array of heterogeneous FUs, where four 

FUs are logically grouped into an FU-cluster, organized 

into four FU-clusters. FU-clusters are connected to each 

other by a scalable inter-cluster communication network. 

An FU-cluster has LRFs that can be directly accessed 

by FUs in the FU-cluster. An FU can write to a remote 

LRF through an inter cluster channel (ICC) in its home FU-

cluster. An ICC of an FU-cluster is a unidirectional channel 

through which an FU in the FU-cluster can broadcast its 

output to all FUs and LRFs in all other remote FU-clusters. 

2.1 Qualified Routing Patterns 

First, we take advantage of a direct path as often as 

possible. A direct path between a source and a destination 

FUs is defi ned as the shortest path in terms of the delay of 

TRNs. It consists only of TRNs without any FU or RF 

between the two FUs. Second, when a direct path is not 

available, an indirect path is utilized. An indirect path 

contains exactly one LRF between the source and 

destination FUs. We call the direct and indirect paths 

defined as above qualified paths. Direct and indirect paths 

can be subdivided into intra and inter-clusters paths. A 

path is an intra-cluster path if the clusters are the same. 

Otherwise, the path is an inter-cluster path. 

Example qualified paths are shown in the Fig. 2. The 

essential resources for each type of qualifi ed paths can be 

summarized into a fi xed set of LRFs and inter cluster 

channels (ICCs) for each type of qualified path type. 

 

Fig. 2. Categorization of qualified routing patterns and 

representative examples 

 

2.2 Conservative Reservation 

Our scheduler only uses routes that conform to the 

qualifi ed paths. One of the benefi ts qualifi ed patterns 

offer is that most of the routing requirements for a DFG can 

be supported by these pattern. Another advantage of 

qualifi ed paths is that the essential resources and their 

time slots relative to the source and destination FUs can be 

determined as shown in the Fig. 2. We utilize these 

characteristics of qualifi ed paths to ensure successful 

routings originated from an operation in advance when the 

operation is placed at one FU. More specifi cally, the 

resources and their time slots that can guarantee a route 

are conservatively estimated and reserved before the 

actual routing step happens.  

 

3. EXPERIMENTAL RESULTS 

 
To evaluate the effectiveness of the proposed algorithm, 

we took 34 shaders from Taiji benchmark in Basemark ES 

2.0. We compared the proposed algorithm, called Fast 

Modulo Scheduler (FMS), to the existing state-of-art 

CGRA Modulo Scheduler, edge-centric modulo scheduler 

(EMS). 

3.1 Compilation Time 

Depending on the size of codes, the compile times of EMS 

range from around 1 seconds to 3500 seconds. On the 

other hand, compile times of FMS are less than one second, 

varying between 0.01 second to 0.9 second. FMS is up to 

6074 times faster than EMS, 310 times on average. The 

compile times of 34 shader codes as their code sizes rise 

are plotted in Fig. 3. Notice that the y-axis is displayed in 

a logarithmic scale. It is easy to perceive that the compile 

time of EMS is exponentially proportional to the number of 

operations. As the number of operations increases, the 

schedule length is generally linearly prolonged, which 

causes demands for routings with large differences in 

schedule time. For EMS, these long routings are harder to 

map to CGRA since the search space for them expands 

exponentially to their lengths. On the other hand, compile 

times of FMS are polynomially proportional to the number 



2014년 한국방송공학회 하계학술대회 

of operations. Overall, FMS satisfy the compile time 

require-ment for 3D applications, which is not even 

approachable for existing CGRA modulo schedulers. 

 

Fig. 3. Comparison of compile time 

 

3.2 Performance 

FMS suffers 30% performance degradation on average 

compared to EMS, which is subdivided into average 22% 

for pixel and average 37% for vertex shader codes. The 

performance loss is expected since our scheduler explores 

much smaller search space by confining routing patterns.  

 

References 

 
[1] B. Mei, S.Vernalde, D.Verkest,H.De Man, and R. 

Lauwereins, “ Dresc: a retargetable compiler for coarse-

grained reconfi gurable architectures,”  in Proc. of 

FPT2002, Dec. 2002, pp. 166– 173. 

[2] H.Park, K.Fan, S. A. Mahlke,T. Oh, H. Kim, and H.-

s. Kim, “ Edgecentric modulo scheduling for coarse-

grained reconfi gurable architectures,”  in Proc. of 
PACT’ 08, 2008, pp. 166– 176. 

[3] B. R. Rau, “ Iterative modulo scheduling: an 

algorithm for software pipelining loops,”  in Proc. of 

MICRO27, 1994, pp. 63– 74. 

 

 

 


