Acknowledgement
Supported by : 한국연구재단
DOI QR Code
국내 공공도서관에서는 잘못 분류된 도서의 서가(bookshelf) 배치로 인해 이용자의 불편과 해당 도서관의 도서분류체계와의 불일치 등으로 도서관리에 어려움을 겪고 있다. 또한 자동 도서분류를 위한 기계학습 등 다양한 알고리즘의 연구가 진행되어 왔으나 적은 학습데이터에서의 분류효과 향상에 한계가 있었다. 이에 이 연구에서는 KORMARC(Korea Machine Readable Cataloging) 의 색인어(키워드) 정보를 결합한 확장된 나이브베이지안 알고리즘을 제안하였다. 색인어 정보는 일반적으로 도서검색시스템에서 검색 효과를 높이기 위해 이용되고 있으며 실제 공공도서관에서의 실험을 통해 도서량이 적은 경우에 보다 높은 분류효과를 얻을 수 있음을 실험 평가하였다.
Supported by : 한국연구재단