Tumbling motions of [NH₂(CH₃)₂]⁺ ions in [NH₂(CH₃)₂]₂CoCl₄ determined by ¹H MAS NMR spectroscopy in the rotating frame

Nam Hee Kim^{b*}, Min Surk Hyung^a, Ae Ran Lim^{a,b}

^aDepartment of Science Education, Jeonju University, Jeonju 560-759, Korea ^bDepartment of Carbon Fusion Engineering, Jeonju University, Jeonju 560-759, Korea

The structure and phase transition temperatures of $[NH_2(CH_3)_2]_2CoCl_4$ were determined using x-ray diffraction and differential scanning calorimetry (DSC), respectively. While the structure for the $[NH_2(CH_3)_2]_2CoCl_4$ crystals determined using x-ray diffraction is consistent with the previously reported results, the phase transition temperatures using DSC are not. It is possible that the phase transition temperatures of [NH₂(CH₃)₂]₂CoCl₄ vary according to the conditions of crystal growth. The local structure was studied using ¹H MAS NMR spectroscopy: the chemical shifts and the spin-lattice relaxation time T1p in the rotating frame for the ¹H nucleus in $[NH_2(CH_3)_2]_2CoCl_4$ were observed. The results show that the structural change due to chemical shifts does not occur with a change in the temperature. The temperature dependence of the T_{1p} values for ¹H reflect the modulation of the inter-NH₂ and inter-CH₃ dipolar interactions due to $[NH_2(CH_3)_2]^+$ motions. The T_{1p} values of materials containing paramagnetic ions are shorter than those of pure materials; the influence of the paramagnetic ions is predominant. The relaxation time should be inversely proportional to the square of the magnetic moment of the paramagnetic ions. Therefore, $T_{1\rho}$ of materials containing Co^{2+} ions is shorter than those of materials without paramagnetic ions. Therefore, the ¹H spin-lattice relaxation is driven by the fluctuations of the magnetic dipole of the Co^{2+} paramagnetic ions. A shorter T_{1p} indicates that the transfer of energy from the nuclear spin system to the surrounding environment is more facile. On the other hand, T_{1p} for ¹H in [NH₂(CH₃)₂]₂CoCl₄ showed a minimum, and it is apparent that the $T_{1\rho}$ values for ¹H are governed by the tumbling motions. The long $T_{1\rho}$ for ¹H above T_{C1} may be due to the breakage and replacement of two hydrogen bonds in the dimethylammonium ions. This hypothesis is supported by the results of the x-ray diffraction of [NH2(CH3)2]2CoCl4. The activation energy was determined from the results of the T1p NMR relaxation experiments. The activation energy for ¹H nuclei is lower above T_{C1} than below T_{C1}. The protons exhibit high mobility, and which thus have great potential as proton conductors. In future work, the structural properties of N(1) and N(2) in two inequivalent $[NH_2(CH_3)_2]^+$ groups will be discussed on the basis of high field FT NMR results.