Effect of external field on current-induced skyrmion dynamics in a nanowire

Seung-Jae Lee^{1*}, Jung-Hwan Moon², and Kyung-Jin Lee^{1,2}

¹KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Korea

²Department of Materials Science and Engineering, Korea University, Seoul, Korea

1. Introduction

In magnetic systems with an inversion asymmetry and large spin-orbit coupling, the antisymmetric exchange interaction called the DM interaction is arisen [1,2]. It was predicted theoretically that the Dzyaloshinskii-Moriya (DM) interaction is partially responsible for the magnetic skyrmion [3].

The DM interaction contributes to make nano-sized skyrmions which are topological spin textures. It has been expected to have higher potential as information unit in ultrahigh density storage and logic devices [4]. Up to now, most studies have focused on current-driven case, but case in the presence of both field and current has lacked. In this work, we investigate effect of the magnitude/direction of external field on current-induced skyrmion motion in a nanowire, based on micromagnetic simulations.

2. Simulation Scheme

We investigate skyrmion velocity using Landau-Lifshitz-Gilbert equation with an spin hall spin transfer torque with current density and external field as variables. We assume following parameters; nanowire width is 40 nm, thickness is 1 nm, cell size is $1\times1\times1$ nm³, saturation magnetization is 1000 emu/cm³, exchange stiffness constant is 1.2×10^{-6} erg/cm, DM constant is 2 erg/cm², spin hall angle is 0.3, perpendicular magnetocrystalline anisotropy K_u is 1×10^7 erg/cm³.

3. Result and Discussion

Figure 1(a) shows the velocity of skyrmion is quasi-linear function of current density at various values of external perpendicular magnetic field \mathbf{H}_z . This behavior can be understood by skyrmion size [4,5], which depending on magnitude/direction of \mathbf{H}_z field and current density, as shows in Fig. 1(b).

Figure 2 shows the maximum velocity of skyrmion, which is obtained before the annihilation of skyrmion at nanowire edge, can change by in-plane magnetic field \mathbf{H}_x and \mathbf{H}_y , and change more sensitively by \mathbf{H}_y rather than \mathbf{H}_x . In contrast to \mathbf{H}_z , the external magnetic field \mathbf{H}_y shifts skyrmion core to -y direction. This shift of skyrmion core may be seemed that \mathbf{H}_y acts like a force acting along -y direction. By this force, the maximum velocity of skyrmion can be increase with higher critical velocity.

Our results show that not only spin-orbit spin transfer torque but also external field can affect skyrmion motion in a different way.

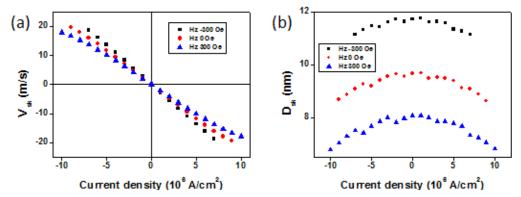


Fig. 1. (a) Skyrmion velocity (V_{sk}) versus current density for different H_z , (b) Skyrmion diameter (D_{sk}) versus current density for different H_z .

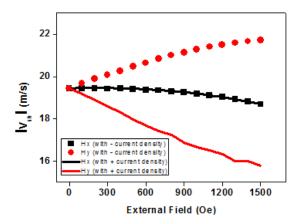


Fig. 2. Maximum speed of skyrmion ($|V_{sk}|$) as a function of magnitude of external magnetic field, in cases of external magnetic field direction is $+\hat{x}$ (black line and symbols), and external magnetic field direction is $+\hat{y}$ (red line and symbols).

4. References

- [1] I. E. Dzyaloshinskii, Sov. Phys. JETP 5, 1259 (1957)
- [2] T. Moriya, Phys. Rev. 120, 91 (1960)
- [3] U. K. Rößler, A. N. Bogdanov and C.Pfleiderer, Nature 442, 797 (2006)
- [4] A. Fert, V. Cros & J. Sampaio, Nature Nanotechnology 8, 152-156 (2013)
- [5] M. E. Knoester, Jairo Sinova, and R. A. Duine, Phys. Rev. B 89, 064425 (2014)