Perpendicular Magnetic Anisotropy Features of [Co/Pd] Multilayer Matrix and Related Synthetic Anti-Ferromagnet Structure

Ja Bin Lee ${ }^{1 *}$, Gwang Guk An ${ }^{1}$, Seung Mo Yang ${ }^{1}$, Jae Hong Kim ${ }^{2}$, Woo Seong Chung ${ }^{3}$, and Jin Pyo Hong ${ }^{1,2}$
${ }^{1}$ Novel Functional Materials and Devices Lab, Department of Physics, Hanyang University, Seoul 133-791, South Korea
${ }^{2}$ Division of Nano-Scale Semiconductor Engineering, Hanyang University, Seoul 133-791, South Korea
${ }^{3}$ Nano Quantum Electronics Lab, Department of Electronics and Computer Engineering, Hanyang University, Seoul 133-791, South Korea

1. Introduction

Perpendicular spin torque transfer magnetic random access memories (p-STT MRAMs) are increasingly becoming one of the most reliable candidates for use in practical devices. ${ }^{1}$ In past years, among various PMA materials including a $L 1_{0}$ alloy, multilayer (ML), and rare earth-transition metal (RE-TM) alloy, the artificial ML matrix consists of ferromagnetic metals and noble metals, such as $\mathrm{Co} / \mathrm{Pd}, \mathrm{Co} / \mathrm{Pt}, \mathrm{Fe} / \mathrm{Pd}$, and $\mathrm{Fe} / \mathrm{Pt},{ }^{2-4}$ and their alloy compositions ${ }^{5-7}$ have been widely explored due to its large PMA features.

2. Experimental Details

Various $[\mathrm{Co} / \mathrm{Pd}]$ MLs with $\mathrm{Ta} / \mathrm{Ru} / \mathrm{Pd}$ seed layers were prepared by utilizing a DC/RF-magnetron sputtering system on oxidized Si substrates at room temperature. After the different thicknesses of the Co and Pd layers were tested within a nominal thickness range from $1 \AA$ to $9 \AA$, the optimized thicknesses were selected for subsequent evaluation in this work. Two samples were prepared as follows: subs. $/ \mathrm{Ta} / \mathrm{Ru} / \mathrm{Pd} /[\mathrm{Co} / \mathrm{Pd}]_{7} / \mathrm{Pd}$ (Sample A) and subs. $/ \mathrm{Ta} / \mathrm{Ru} / \mathrm{Pd} /[\mathrm{CoO} / \mathrm{Pd}]_{2} /[\mathrm{Co} / \mathrm{Pd}]_{7} / \mathrm{Pd}$ (Sample B). The CoOlayer was grown by a reactive sputtering method, while the other Co layer was fabricated under only an Ar ambient. Finally, post thermal annealing was carried out at various temperatures under perpendicular magnetic field of 3 Tesla.

3. Results and Discussion

The ordinary ML matrix (Sample A) revealed an anisotropic energy of around $3 \mathrm{Merg} / \mathrm{cc}$, while the modified [Co/Pd] ML matrix (Sample B) provided a significantly higher K_{U} value of $7.43 \mathrm{Merg} / \mathrm{cc}$ after annealing. By utilizing the high-resolution x-ray diffraction (HR-XRD) $\theta-2 \theta$ scan, all the samples have been confirmed to have a (111) crystal orientation. The Rocking curve measurement showed that the crystal orientation quality of annealed Sample B seems to be better than that of Sample A. Therefore, we expect that the difference in the main peak location, peak shift, and FWHM widths between Sample A and B may be associated with the induced lattice strain in the Sample B under annealing.The x-ray photoelectron spectroscopy (XPS) suggests an evidence for the presence of Co-O bonding states and annealing dependent oxygen atom diffusion event, along with HR-XRD results.

4. Conclusion

In summary, we present thermally stable behaviors of $[\mathrm{Co} / \mathrm{Pd}]_{\mathrm{n}}$ ML matrix incorporated with a $[\mathrm{CoO} / \mathrm{Pd}]_{\mathrm{m}}$ bottom layer. Post thermal annealing even at the higher temperature of $450^{\circ} \mathrm{C}$ allows for a proper diffusion process of oxygen atoms associated with initially formed Co-O binding during deposition. The diffused oxygen atoms may lead to structural reconfiguration in the ML matrix by providing proper lattice strains in the $[\mathrm{Co} / \mathrm{Pd}] \mathrm{ML}$ framework. The ordinary ML matrix revealed an effective anisotropic energy of around $1.25 \mathrm{Merg} / \mathrm{cc}$, while the modified [Co/Pd] ML matrix provided a significantly higher $K_{\text {eff }}$ value of $3.40 \mathrm{Merg} / \mathrm{cc}$ after annealing.

5. References

[1] S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science 294, 1488 (2001)
[2] H. J. G. Draaisma, W. J. M. de Jonge, and F. J. A. den Broeder, J. Magn. Magn. Mater. 66, 351 (1987)
[3] P. F. Carcia, J. Appl. Phys. 63, 5066 (1988)
[4] F. J. A. den Broeder, D. Kuiper, H. C. Donkersloot, and W. Hoving, Appl. Phys. A 49, 507 (1989)
[5] B. M. Lairson, M. R. Visokay, R. Sinclair, and B. M. Clemens, Appl. Phys. Lett. 62, 639 (1993)
[6] M. R. Visokay and R. Sinclair, Appl. Phys. Lett. 66, 1692 (1995)
[7] V. Gehanno, A. Marty, B. Gilles, and Y. Samsonj, Phys. Rev. B 55, 12552 (1997)

