Electronic structure change due to migration of oxygen vacancies in Ca-doped BiFeO₃

Ji Soo Lim^{1*}, A. Ikeda-Ohno^{2,3}, T. Ohkochi⁴, M. Kotsugi^{4,5}, T. Nakamura⁴, J. Seidel⁶, Chan-Ho Yang^{1,7}

¹Department of Physics, KAIST, Daejeon 305-701, Republic of Korea

²School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia

³Institute for Environmental Research, Australian Nuclear Science and Technology Organisation,

⁴Japan Synchrotron Radiation Research Institute, SPring-8, Sayo, Hyogo 679-5198, Japan

⁵CREST-JST, Kawaguchi, Saitama 332-0012, Japan

⁶School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW 2052, Australia ⁷Institute for the NanoCentury, KAIST, Daejeon 305-701, Republic of Korea

Doped correlated oxide systems would have shown exotic electronic condution phenomena such as metal-insulator transition, superconductor and magnetoresistance. Bismuth ferrite (BiFeO₃), one of popular multiferroic materials, has a large ferroelectric polarization and an antiferromagnetic order. Due to a stable oxidation number of Fe ions, the divalent ion (Ca²⁺) doping on BiFeO₃ cannot produce hole carriers due to formation of oxygen vacancies. In order to explore the electronic conduction of doped BiFeO₃ compounds, we fabricated a coplanar electrode structure and applied an electric field across the electrodes at a high temperature. As a result, we can make relatively oxygen-vacancy-deficient areas in between, thereby producing a p-type doped region. In this talk, we will present our recent observations of electronic transport properties. In addition, we introduce its electronic structure which was characterized by x-ray absorption spectroscopy (XAS) and photoelectron emission microscopy (PEEM) in a beamline (BL25SU) of synchrotron SPring-8. Remarkably we have observed doping-driven occurrence of a new peak 2 eV below the t2g peak in oxygen K-edge spectra. Interesting interplay between doping ratio. Furthermore, spatially-resolved x-ray circular dichroism (XMCD) enables us to study the local spin and orbital angular momenta varying depending on the hole carrier doping.