Strain effect on magnetic properties in SrRu_{0.9}Fe_{0.1}O₃ thin films

Kirstie Raquel Natalia Toreh*, Octolia Togibasa Tambunan, and Chang Uk Jung*
Department of Physics, Hankuk University of Foreign Studies, Yongin 449-791, Korea

*Email: cu-jung@hufs.ac.kr

SRO have been used widely as electrodes in oxide heterostructures due to their good conductivity and good lattice match with most popular single-crystalline perovskite oxide substrates such as SrTiO₃. Doping in polycrystalline SRO has been used to control magnetic properties such as *Tc* and magnetic coercive fields.

In this paper, epitaxial films of SrRu_{0.9}Fe_{0.1}O₃have been grown by pulsed laser deposition onto both SrTiO₃(001) and SrTiO₃(110) substrates. It has been found that Fe-doped SRO can be stabilized by using epitaxial strain during film growth. We observed magnetic anisotropy and differences in *Tc* and saturated magnetic moment between SrRu_{0.9}Fe_{0.1}O₃/SrTiO₃(001) film and SrRu_{0.9}Fe_{0.1}O₃/SrTiO₃(110) film. The correlation between magnetic behavior defferences with Ru-Ru nearest neighbor distance in different substrate direction will be discussed.