초음파 조건에 노출된 핵연료 진동평가

The Vibration Evaluation of the Nuclear Fuel under Ultrasonic Condition

김경홍 + · 박남규 * · 김경주* · 김재익* · 김형구*

Kyoung-hong kim, Nam-gyu Park, Kyoung-joo Kim, Jae-ik Kim and Hyeong-koo Kim 2.2 초음파 세정 원리

1. 서 론

국·내외 발전소에서 발생하고 있는 비정상 축방향 출력분포(AOA: Axial Offset Anomaly)는 발전소 운 전 중 노심 상부의 축 방향 출력 분포가 크러드 및 붕소의 침착에 의해 비정상적으로 찌그러지는 현상 을 말하며, 발전소 운전에 많은 영향을 미치고 있다. 장주기, 고연소도 원전으로 발전해 갈수록 AOA 는 더 많은 영향을 줄 것으로 예상되고 있다. 이에 따 라 핵연료 피복관에 크러드 및 붕소의 침착을 제거 하기 위한 기술들이 개발 및 연구 중에 있으며, 이 중 초음파 워리를 이용하는 크러드 세정장비가 대 표적이다. 크러드 세정장비는 고주파의 진동을 유체 를 통해 전달하기 때문에 전달되는 음파의 크기에 따라 핵연료의 건전성에 영향을 미칠 수 있으며, 건 전성을 증명하기 위한 모의 시험이 필요하다. 따라 서 본 연구에서는 초음파 세정 방법을 사용하는 장 비를 이용하여 초음파 조건에 노출된 핵연료의 모 의시험을 수행하고. 펠렛 및 피복과 측면에서 핵연 료 건전성을 평가하였다.

2. 초음파 크러드 세정시험

2.1 초음파 크러드 세정장비 개요

초음파 크러드 세정방법은 미국 EPRI(Electric Power Research Institute)에서 1998년부터 개발을 시작하였고, 미국 원자력 발전소에 적용하여 성공적으로 크러드 세정작업을 수행하여왔다. 현재 미국 및 스페인 등에서 PWR 및 BWR 원전용 핵연료를 대상으로 크러드 세정작업을 수행하고 있으며, 한국에서도 한전원자력연료㈜가 국내 원자력 발전소의 크러드 세정작업을 성공적으로 수행하였다.

인간의 귀를 통해 들을 수 없는 20kHz이상 주파수를 갖는 음파를 초음파라 지칭하며, 초음파 세정장비는 초음파 사용에 의한 캐비테이션(Cavitation) 효과를 이용한다. 캐비테이션 효과란 초음파에 의한압축 및 팽창력을 유체에 지속적으로 발생을 시키면서 감압력이 작용할 때 액체에 미소의 진공의 공동을 생성하고 액체에 녹아 있는 기체가 이 공동으로 모이면서 기체가 충만한 기포로 변하는 현상이다. 이 기포가 터질 때, 국부적으로 충격력이 발생되어, 연료봉에 침착된 크러드를 제거한다.

2.3 초음파 세정 장비의 구성

본 시험에서 사용된 주요 초음파 세정장비는 Fig.1과 같다. 초음파 신호 발생기는 초음파 변환기의 파워 및 생성 주파수를 제어하기 위해 사용되며, 초음파 변환기는 유체에 직접 투입되어 초음파를 발진시킨다. 초음파 신호 발생기 및 변환기는 핵연료 집합체의 4면에 각각 독립적으로 구성되며, 20 kHz 이상에서 총 4000 W급의 에너지에 해당하는 초음파를 생성한다. 본 시험에 사용된 장비는 현재원자력 발전소에서 사용하는 크러드 세정장비보다약 10% 정도 선형 밀도 출력이 높아 실제 사용조건 보다 보수적인 조건이다.

(a) 초음파 신호 발생기 (b) 초음파 변환기 Fig.1 초음파 세정장비

2.4 모의 핵연료 집합체 및 측정시스템

Fig.2와 같이 길이방향으로 1/4로 축소한 핵연료 집합체를 제작하였으며, 피복관에는 우라늄 펠렛과 동일한 질량 효과를 주기 위한 텅스텐 펠렛이 장입 되었다. 1/4 축소 모델은 실제 크러드 세정장비의 초음파 변환기에 노출될 때 가장 많은 진동에 영향

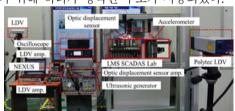
 ⁺ 교신저자; 한전원자력연료㈜

 E-mail: kyounghong@knfc.co.kr

 Tel:042-868-1367, Fax: 042-868-1149

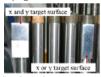
^{*} 한전원자력연료㈜

을 받을 수 있는 지점으로 선정하였으며, 시험 시유체가 피복관 내부로 침투하지 못하도록 상부 및하부를 밀봉하였다.



(a) 핵연료 골격체

(b) 핵연료 집합체


Fig. 2 모의시험용 핵연료 집합체

핵연료 집합체의 진동을 분석하기 위하여 Fig.3 (a)와 같이 시험장치가 구성되었으며, 연료봉의 진동을 측정하기 위한 광 변위센서, 가속도 센서, 레이저 속도계, 음압센서 등이 사용되었다. 광 변위센서의 경우, Fig.3(b)와 같이 1/4 μm로 폴리싱된 표적을 핵연료 집합체에 부착하여 미세한 진동을 측정하였다. 또한 핵연료의 크러드 세정작업이수행되는 사용 후 저장조와 같은 온도를 만들어주기 위해 히터가 장착된 수조가 사용되었다.

(a) 시험장치 구성도

(b) 광 변위센서 타겟면 Fig. 3 시험장치 구성도

2.5 초음파 세정장비의 음압특성

초음파 세정장비에서 온도 조건에 따라 발생하는 초음파의 음압특성을 확인하기 위해 B&K사의 Hydrophone(Type8103)을 사용하여 상은과 사용후 저장조 온도 조건에서 핵연료 집합체 없이 시험을 수행하였으며, 그 결과는 Fig.4와 같다. 최소 100회 이상 평균화된 데이터를 이용하여 가로축은 DAQ에서 측정 가능한 최대 주파수로, 세로축은 최대 값으로 정규화되었다. 냉각수의 온도가 높아짐에따라 초음파 변환기에서 발생하는 음압이 상은 조건보다 약 30 %정도 낮아졌으며, 초음파 세정장비

의 구조적 영향으로 인해 서브하모닉 주파수와 슈 퍼하모닉 주파수 성분도 관측되었다.

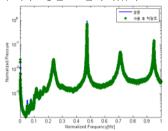


Fig.4 온도에 따른 음압 측정 결과

2.6 핵연료 집합체 진동특성

핵연료 연료봉의 진동특성 시험결과는 Fig.5와 같으며, 가로축은 최대시간으로, 세로 축은 시험중 발생한 최대 가속도로 정규화되었다. 연료봉에 부착된 가속도계로 측정된 최대 가속도는 우라늄 펠렛의 파손을 야기할 수 있는 가속도의 약 65 % 수준으로 관측되었다. 변위의 경우, 100 Hz 미만에서 최대값이 발생하며, 시간 도메인에서 측정된 최대변위는 연료봉 파괴응력의 0.3 % 수준으로 매우 낮다. 따라서 초음파 세정작업으로 핵연료 집합체가 약10분간 초음파에 노출될 경우, 연료봉은 약 60,000번 진동하지만 하중이 작아 핵연료 건전성에 충분히 유지되는 것으로 평가된다.

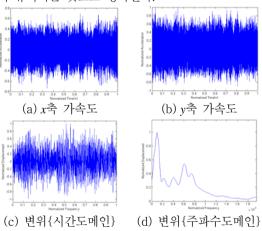


Fig.5 핵연료 진동특성 시험 데이터

3. 결 론

본 연구에서는 초음파를 사용하는 크러드 세정장비를 이용하여 초음파 조건에 노출된 핵연료 연료 봉의 진동특성을 확인하였으며, 크러드 세정작업으로 인하여 핵연료 연료봉 건전성에 미치는 영향은 미미할 것으로 평가되었다.