차량 실내의 입체음향 특성 및 사운드 볼을 이용한 실감음향 구현 Characteristics of Three-Dimensional Sound Inside the Car and Realistic Sound Using Sound Ball

이정민 + · 강동수* · 최정우* · 김양한* · 장세진** · 이종설**

Jung-Min Lee, Dong-Soo Kang, Jung-Woo Choi, Yang-Hann Kim, Sei-Jin Jang and Jong-Seol Lee

1. 서 론

다수의 스피커를 사용하여 공간 상의 음압 분포를 제어하는 기술을 통해 실제 스피커가 없는 위치에 가상 음원을 형성할 수 있다. Choi 와 Kim은 스피커 어레이와 청자 사이에 위치한 가상 음원인 '사운드 볼'을 형성하는 방법을 제안하였고⁽¹⁾, 다양한 형태의 스피커 어레이 시스템을 통해 사운드볼을 구현하였다⁽²⁾. 이를 차량 오디오 시스템에 적용하면 실감음향뿐만 아니라 주행정보 전달 등 다양한 용도로 사용될 수 있다.

차량 내부에서 사운드 볼을 이용한 입체음향을 구현하기 위해서는 먼저 차량 실내 환경에 의한 영향을 살펴볼 필요가 있다. 본 논문의 목적은 차량 실내에서 입체음향 특성을 파악하고, 차실 전면에 배치한 선형 스피커 어레이를 통해 사운드 볼을 구현 및 성능을 평가하는 것이다.

2. 차량 실내의 입체음향 특성

2.1 입체음향 특성 측정환경

차량 내부에서의 입체음향 특성을 측정하기 위해 기아 쏘울 차량 전면 대시 보드에 8채널 선형 스피커 어레이를 설치하였다(1인치 스피커 유닛, 14cm 등간격 배치, Figure 1(좌)). 각 좌석에서 청자의 양귀 위치에서의 특성을 파악하기 위해 헤드 레스트로부터 10cm 떨어진 위치에 설치된 마이크로폰 (Figure 1(우))을 통해 충격응답을 측정하였다.

Figure 1 Illustration of experimental design

2.2 충격응답을 통한 입체음향 특성 파악

측정한 충격응답을 통해 차량의 실내음향 특성을 분석하였다. Figure 2(상)는 4번 채널 스피커로부터 운전석의 양 귀 위치에서 측정한 충격응답 함수이다. 직접음이 입사된 이후에 다수의 초기 반사음들이 도달하는데, 대부분 50ms 안쪽에 존재함을 확인할 수 있다(Figure 2(하)). 따라서 초기 반사파에 의해 결정되는 음향 인지 특성인 Apparent source width(ASW)⁽³⁾가 주된 입체음향 특성이 될 것이다. 반대로 후기 반사파와 반향을 발생하는 80ms 이후에는 어떠한 주파수 성분도 포함하지 않는다.

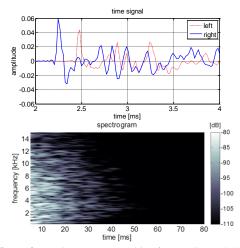


Figure 2 Impulse response at driver's seat (SPK. ch.4)

[†] KAIST 소음 및 진동제어 연구센터(NOVIC) E-mail: jungminlee@kaist.ac.kr

Tel: (042)350-3065, Fax: (042)350-8220

^{*} KAIST 소음 및 진동제어 연구센터(NOVIC)

^{**} 전자부품연구원 차세대음향산업지원센터

2.3 입체음향의 정량적 특성

ASW는 양 귀에 도달하는 음압 사이의 상관성을 나타낸 Interaural Cross-correlation Coefficient (IACC)를 통해 정량적으로 측정할 수 있다⁽⁴⁾. 서로 상관성이 낮은 소리가 양 귀에 도달할수록 더 큰 ASW를 인지하기 때문에 IACC와 ASW는 반비례 관계를 갖는다.

각 좌석에서 측정한 IACC는 모두 0.5이하의 값을 갖는데(Figure 3), 이는 초기 반사파들에 의해 음압 사이의 상관성이 감소하였기 때문이다. 따라서 차량실내에서 청자는 전 좌석에서 ASW를 인지할 수 있다. 또한, 반사파가 더 많이 발생하는 뒤 좌석에서 측정한 IACC가 앞 좌석에서보다 더 작은 경향을보인다. 운전석과 가장 가까운 정면에 위치한 2번째 스퍼커는 반사파보다 직접음의 영향이 지배적이기때문에 다른 좌석에서보다 IACC가 더 크다. 그러나운전석과 조수석 중앙부분에 위치한 4번째 스피커의 경우 모든 좌석에서 0.3이하의 IACC가 형성된다. 따라서 대시 보드의 중앙에 위치한 스피커는 모든 좌석에 큰 ASW를 형성할 수 있다.

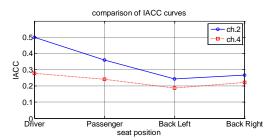
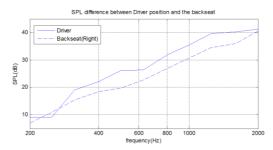



Figure 3 IACC at each seat position (SPK. ch.2 and 4)

3. 사운드 볼을 통한 실감음향 구현

어레이를 구성하는 개별 스피커로 입력되는 신호의 이득과 시간 지연을 조절하여 원하는 위치에 사운드 볼을 구현할 수 있다. 청자 위치에 형성한 사운드 볼은 음원이 머리 근처에 존재하는 듯한 실감음향 효과를 제공할 수 있다.

이에 사운드 볼을 운전석 헤드레스트 15cm 정면에 형성 시 가진 주파수 별로 운전석과 뒤 좌석 사이의 음압 레벨을 비교하였다(Figure 4). 또한, 전체음압레벨은 뒤 좌석보다 운전석에서 4.15dB 높다. 결과적으로 청자의 위치 근처에 형성한 사운드 볼을 통해 더 큰 소리를 들을 수 있는 환경을 구현할수 있음을 확인하였다.

Figure 4 Difference of sound pressure level between driver and back seat(right)

4. 결 론

차량 실내에 설치한 스피커 어레이를 사용하여 사운드 볼 형성 시 입체음향 특성을 파악하였다. 먼저, 차량 내부에서 측정한 충격응답을 통해 초기 반사파로부터 ASW가 주로 인지될 것임을 확인하였다. 이러한 입체음향 특성은 청자 근처에 사운드 볼 형성 시 발생하는 큰 음압레벨과 함께 근접음원에 의한 실감음향 효과를 제공할 것이다.

후 기

본 연구는 2014년도 정부(산업통상자원부)의 재원으로 산업융합기반구축사업의 지원을 받아 수행된 연구입니다(No. 10037244).

참고문헌

- J.-W. Choi and Y.-H. Kim, "Integral approach for the reproduction of a virtual sound source surrounded by loudspeaker array," *IEEE Trans. Speech Audio Process.*, vol.20(7), 1976-1989, 2012.
- (2) 강동수, 최정우, 이정민, 김양한, "소리의 공간 제어를 위한 구형 다채널 스피커 어레이 설 계," 한국음향학회지 31(3), 214-224, 2012.
- (3) M. Barron, "The subjective effects of first reflections in concert halls—the need for lateral reflections," *J. Sound Vib.*, vol.15(4), 475–494, 1971.
- (4) W. Keet, "The influence of early lateral reflections on the spatial impression," in *Proc. 6th ICA*, Tokyo, Japan, 1968.