Neutrino mass from cosmological probes

  • Rossi, Graziano (Department of Astronomy and Space Science, Sejong University)
  • Published : 2014.10.13

Abstract

Neutrino science has received a boost of attention quite recently in cosmology, since the outstanding discovery in particle physics over the last decade that neutrinos are massive: pinpointing the neutrino masses is one of the greatest challenges in science today, at the cross-road between particle-physics, astrophysics, and cosmology. Cosmology offers a unique 'laboratory' with the best sensitivity to the neutrino mass, as primordial massive neutrinos comprise a small portion of the dark matter and are known to significantly alter structure formation. I will first introduce a new suite of state-of-the-art hydrodynamical simulations with cold dark matter, baryons and massive neutrinos, specifically targeted for modeling the low-density regions of the intergalactic medium as probed by the Lyman-Alpha forest at high-redshift. I will then present and discuss how these simulations are used to constrain the parameters of the LCDM cosmological model in presence of massive neutrinos, in combination with BOSS data and other cosmological probes, leading to the strongest bound to date on the total neutrino mass.

Keywords