Extracting Multi-type Elements Consisting of Multi-words from Sentences

문장으로부터 여러 단어로 구성된 여러 유형의 요소 추출

  • Yang, Seon (Department of Computer Engineering, Dong-A University) ;
  • Ko, Youngjoong (Department of Computer Engineering, Dong-A University)
  • 양선 (동아대학교 컴퓨터공학과) ;
  • 고영중 (동아대학교 컴퓨터공학과)
  • Published : 2014.10.07

Abstract

문장을 대상으로 특정 응용 분야에 필요한 요소를 자동으로 추출하는 정보 추출(information extraction) 과제는 자연어 처리 및 텍스트 마이닝의 중요한 과제 중 하나이다. 특히 추출해야할 요소가 한 단어가 아닌 여러 단어로 구성된 경우 추출 과정에서 고려되어야할 부분이 크게 증가한다. 또한 추출 대상이 되는 요소의 유형 또한 여러 가지인데, 감정 분석 분야를 예로 들면 화자, 객체, 속성 등 여러 유형의 요소에 대한 분석이 필요하며, 비교 마이닝 분야를 예로 들면 비교 주체, 비교 상대, 비교 술어 등의 요소에 대한 분석이 필요하다. 본 논문에서는 각각 여러 단어로 구성될 수 있는 여러 유형의 요소를 동시에 추출하는 방법을 제안한다. 제안 방법은 구현이 매우 간단하다는 장점을 가지는데, 필요한 과정은 형태소 부착과 변환 기반 학습(transformation-based learning) 두 가지이며, 파싱 혹은 청킹 같은 별도의 전처리 과정도 거치지 않는다. 평가를 위해 제안 방법을 적용하여 비교 마이닝을 수행하였는데, 비교 문장으로부터 각자 여러 단어로 구성될 수 있는 세 가지 유형의 비교 요소를 자동 추출하였으며, 실험 결과 정확도 84.33%의 우수한 성능을 산출하였다.

Keywords