대기압 플라즈마 도핑 공정 시 그라운드 형태에 따른 전류 패스 경향성 분석에 관한 연구

  • 김상훈 (광운대학교 전자바이오물리학과) ;
  • 윤명수 (광운대학교 전자바이오물리학과) ;
  • 조태훈 (광운대학교 전자바이오물리학과) ;
  • 박종인 (광운대학교 전자바이오물리학과) ;
  • 박혜진 (광운대학교 전자바이오물리학과) ;
  • 조광섭 (광운대학교 전자바이오물리학과) ;
  • 최은하 (광운대학교 전자바이오물리학과) ;
  • 권기청 (광운대학교 전자바이오물리학과)
  • Published : 2014.02.10

Abstract

일반적으로 태양전지 및 반도체 공정에서 불순물 주입 과정인 도핑(Doping)공정은 크게 몇 가지 방법으로 구분해 볼 수 있다. 소성로(Furnace)를 이용하여 열을 통해 불순물을 웨이퍼 내부로 확산시키는 열확산 방법과 진공 챔버 내부에서 전자기장을 걸어 이온을 극도로 가속시켜 진행하는 이온 주입(Ion implantation)이나 이온 샤워(Ion shower)를 이용한 도핑 방법이 있다. 또한 최근 자외영역 파장의 레이저광을 조사하여 광화학 반응에 의해 도펀트 물질를 분해하는 동시에 조사 부분을 용해하여 불순물을 도포하는 기법인 레이져 도핑(Laser doping) 방법이 개발중이다. 그러나 레이져나 이온 도핑 공정기술은 고가의 복잡한 장비가 필요하여 매출 수익성 및 대량생산에 비효율적이며 이온 주입에 의한 박막의 손상을 치료하기 위한 후속 어닐링(Post-annealing) 과정이 요구되는 단점을 가지고 있고 열확산 도핑 방법은 정량적인 불순물 주입 제어가 어렵고 시간 대비 생산량의 한계가 있다. 반면 대기압 플라즈마로 도핑을 할 경우 기존에 진공개념을 벗어나 공정상에서 보다 저가의 생산을 가능케 할 뿐아니라 멀티 플라즈마 소스 개발로 이어진다면 시간적인 측면에서도 단연 단축시킬 수가 있어 보다 대량 생산 공정에 효과적이다. 따라서 본 연구에서는 새로운 도핑 방법인 대기압 플라즈마를 이용한 도핑 공정기술의 가능성을 제안하고자 도핑 공정 시 웨이퍼 내 전류 패스(Current path)에 대한 메카니즘을 연구하였다. 대기압 플라즈마 방전 시 전류가 웨이퍼 내부에 흐를 때 발생되는 열을 이용하여 도핑이 되는 형식이란 점을 가정하고 이 점에 대한 원리를 증명하고자 실험을 진행하였다. 실험 방식은 그라운드(Ground) 내 웨이퍼의 위치와 웨이퍼 내 방전 위치에 따라 적외선 화상(IR image: Infrared image) 화상을 서로 비교하였다. 적외선 화상은 실험 조건에 따라 화상 내 고온의 표식이 상이하게 변하는 경향성을 나타내었다. 이 고온의 표식이 전류 패스라는 점을 증명하고자 시뮬레이션을 통해 자기장의 전산모사를 한 결과 전류 패스의 수직 방향으로 자기장이 형성이 됨을 확인하였으며 이는 즉 웨이퍼 내부 전류 패스에 따라 도핑이 된다는 사실을 명백히 말해주는 것이며 전류 패스 제어의 가능성과 이에 따라 SE(Selective Emitter) 공정 분야 응용 가능성을 보여준다.

Keywords