에지맵 기반의 삼차 스플라인 보간 방법을 이용한 컬러 디모자이킹
 *백민규 **이원진 ***정제창
 *한양대학교 전자컴퓨터통신공학
 *hundredmingyu@gmail.com **veronica0083@gmail.com ***jjeong@ece.hanyang.ac.kr

Cubic Spline Interpolation For Color Demosaicing based on Edge-map

*Baek, Min-Gyu **Lee, Won-Jin ***Jeong, Je-Chang

Dept. Electronics and Computer Eng. Hanyang University

Abstract

\section*{요약}

본 논문은 에지맵 기반의 삼차 스플라인 보간 방법을 이용한 컬러 디모자이킹 방법을 제안한다. 삼차 스플라인 보간 방법은 테이터 집합에 부드러운 곡선을 만드는 방법으로, 부드러운 영상을 만들기에 적ㅎㅎㅂ하다. 상, 하, 좌, 우 총 4 가지 방향에 대하여 각각의 예촉치를 얻어내고, 각 컬러 채널의 에지맵을 이용하여 최종적인 값을 보간한다. 실험결과에서는 기존의 보간 방법보 다 주관적 화질과 Peek Signal to Noise Ratio (PSNR) 촉면에서 더 나은 성능을 보였다.

1. 서론

최근 스마트 기기와 디지털 카메라와 같은 디지털 이미징 장치가 많이 이용되고 있다. 디지털 이미징 장치는 크기가 비용에서 효율성을 가지기 위해 단일 $\mathrm{CCD} / \mathrm{CMOS}$ 영상 센서를 기반으로 한다. 실제 영상 은 영상 센서를 통해 인식되는데, CCD/CMOS영상 센서는 빛의 밝기 만을 인식할 수 있기 때문에 디지털 카메라는 RGB 컬러를 모두 얻기 위해 이미징 장치에 컬러 필터 배열(CFA : Color Filter Array)을 사용 한다. 가장 널리 이용되는 CFA 패턴은 그림 1에 나타나 있는 베이어 패턴(Bayer pattern)이다[1]. 사람의 눈은 R 성분이나 B 성분에 비해 G 성분에 민감하게 반응 하므로 베이어 패턴에서는 G 성분이 R 성분 B 성분에 비해 두 배 많게 배치되어 있다. CFA를 통해 얻어진 이미지 는 픽셀 당 한 가지 색상 정보만을 가지게 되므로 전 채널 컬러 영상을 획득하기 위하여 각 화소 위치에서 손실된 컬러 성분을 이웃 화소를 이용하여 추정하는 과정이 필요하다. 이 과정을 디모자이킹 (demosaicing)이라고 한다.

지금까지 디모자이킹에 대한 다양한 연구가 진행되어 왔고, 다양 한 알고리듬들 또한 제안되었다. 가장 간단한 디모자이킹 알고리듬으 로는 양선형 보간(Bi-linear interpolation)이 있다. 양선형 보간은 화소 가 속한 영역 특성이 고려되지 않기 때문에 구현이 복잡하지 않다는 장점을 가지는 반면, 보간된 영상에서 지퍼모양의 에러나 무지개 형태 의 에러를 발생시키는 문제가 있다. Cok 은 색비(color ratio)는 급하게 변하지 않는다는 사실을 발견하였고, 색비 채널 $(\mathrm{R} / \mathrm{G}, \mathrm{B} / \mathrm{G})$ 에서의 보 간법을 제시하였다[2]. Pei et al. 에 의해 색차(color difference) 신호 에서도 동일한 성질이 있음이 발견되었고[3], 색차 $(\mathrm{G}-\mathrm{R}, \mathrm{G}-\mathrm{B})$ 채널을 이용한 다양한 보간법들이 제안되었다. 하지만 색비, 색차 정보를 이용 한 알고리듬들은 여전히 세세한 경계를 온전하게 보간하지 못하고, 지 퍼모양의 에러나 무지개 형태의 에러를 발생시키므로 이를 개선하기

B	G	B	G	B
G	R	G	R	G
B	G	B	G	B
G	R	G	R	G
B	G	B	G	B

그림 1. 베이어 패턴(Bayer Pattern)

위해, 상, 하, 좌, 우 방향에 대한 에지를 고려하여 각각의 방향에 대해 삼차 스플라인 보간 방법을 이용하여 예측치를 얻어내고, 에지맵에 따 라 4가지 후보 중 한 가지 값이 선택되는 방법이 제안되었다[4]. 본 논 문에서는 각각의 화소 위치에서 에지의 경향성을 예측함으로써 보다 좋은 결과를 이끌어내고 있다.

2. 기존의 알고리듬

삼차 스플라인 보간 방법은 데이터 집합을 연속적으로 가장 부드 럽게 이어 주는 방법으로 CFA demosaicing 에 적합하다. 삼차 스플라 인 보간 방법은 절점 사이의 각 구간에 대해서 다음과 같은 형태의 3차 다항식들로 나타내는 것이다[4].

$$
\begin{equation*}
f_{i}(x)=a_{i} x^{3}+b_{i} x^{2}+c_{i} x+d_{i} . \tag{1}
\end{equation*}
$$

그러므로 $n+1$ 개의 데이터 점들에 대해서는 n 개의 구간이 존재 하며, 또한 $4 n$ 개의 미지수가 결정되어야 한다. 그림 2 에서 $n=3$ 일 때, 왼쪽 방향에 대해 보여주고 있다. 따라서 4 개의 Green pixel 을 이용하게 되고. B_{5} 위치에서의 Green pixel의 예측치를 구하기 위 해 아래와 같은 세 가지 스플라인 식이 요구된다.

$$
\begin{align*}
& f_{0}(x)=a_{0} x^{3}+b_{0} x^{2}+c_{0} x+d_{0} \text { for } x \in[0,2] \tag{2}\\
& f_{1}(x)=a_{1} x^{3}+b_{1} x^{2}+c_{1} x+d_{1} \text { for } x \in[2,4] \\
& f_{2}(x)=a_{2} x^{3}+b_{2} x^{2}+c_{2} x+d_{2} \text { for } x \in[4,6] .
\end{align*}
$$

위의 식을 보면, 값이 정해지지 않은 계수가 12 개이다. 유일한 값을 얻기 위해서는 12 개의 식이 필요하다. 또한, 삼차 스플라인 보간에서는 아래 세 가지 조건이 만족되어야 한다.

$$
\begin{align*}
& \text { 1st condition: } f_{i-1}\left(x_{i}\right)=f_{i}\left(x_{i}\right) \text { for } i=1,2 \\
& \text { 2nd condition: } f_{i-1}^{\prime}\left(x_{i}\right)=f_{i}^{\prime}\left(x_{i}\right) \text { for } i=1,2 \\
& \text { 3rd condition: } f_{i-1}^{\prime \prime}\left(x_{i}\right)=f_{i}^{\prime \prime}\left(x_{i}\right) \text { for } i=1,2 \tag{3}
\end{align*}
$$

위의 세 가지 조건과 색차(color difference) 정보를 이용하여 12 개의 계수의 유일한 값을 얻을 수 있다. 계수의 값을 B_{5} 위치에 있는 식에 대입시켜 풀어내면 아래와 같은 왼쪽 방향에서의 보간식을 얻을 수 있 다.

$$
\begin{align*}
G_{5}^{L}=\frac{1}{48}\left\{G_{0}\right. & +23 G_{2}+23 G_{4}+G_{6} \\
& \left.+8\left(B_{3}-B_{1}\right)+40\left(B_{5}-B_{3}\right)\right\} \tag{4}
\end{align*}
$$

오른쪽, 위쪽, 아래쪽 방향의 예측치 역시 비슷한 방법으로 얻어질 수 있다. 다음으로 4 가지 방향의 예측치 중 어떤 방향을 선택할지 판단하 는 단계가 있다. 일단, 에지 방향에 따라 에지맵을 구하는 방법이 사용 된다. 에지맵은 현재 보간 해야할 화소를 기준으로 상하의 픽셀의 차분 치의 절대값인 V 와 좌우 픽셀의 차분치의 절대값인 H 에 따라 결정된 다[5].

$$
\text { edgemap }(V<H)= \begin{cases}1, & \text { if } V<H \tag{5}\\ 0, & \text { otherwise } .\end{cases}
$$

위의 식에서 1 은 수직 방향으로 에지가 있음을 의미하고 반대로 0 은 수평방향의 에지가 있음을 의미하게 된다. 이제 에지맵의 값에 따라 최종 보간값이 결정되게 되는데, 만약 현재 보간해야할 화소의 위치에 서 에지맵의 값이 1이라면 상, 하, 좌, 우 네 가지 방향 중 위쪽 방향과 아래쪽 방향이 선택될 가능성을 높이는 방향으로 결과 값을 뽑아내야 한다.

3. 제안하는 알고리듬

그림 2. 왼쪽 방향의 삼차 스플라인 보간
본 논문에서는 네 가지 방향에 대한 예측치 중 에지맵에 따라 가 장 가능성이 높은 방향을 선택하여 보간하는 방법에 초점을 맞추고 있 고, 기존의 알고리즘에서 에지맵은 간단한 연산을 통해 구해지기 때문 에 더욱 정확성을 높이는 과정이 필요하다. 또한, 에지맵에 따른 값이 자연 영상의 경향성에 맞지 않을 경우에 대비하여 최대한 이상값을 없 애는 과정을 포함하고 있다.

현재 위치의 에지맵의 값이 주변의 값의 경향성을 따른다고 가정 한다. 그림 3 과 같이 3×3 단위로 현재 화소의 주변 8 개의 이웃 화소의 에지 경향성을 파악하여 잘못된 에지 판정을 갱신하는 방법을 사용한 다. 예를 들어 그림 3을 보면 현재의 화소가 수평에지라고 판별되었지 만, 주변 8개의 이웃화소들의 경향성을 파악해 보면 수평에지로 파악 된 이웃화소가 2 개인 반면 수직에지는 6 개로 판별되었다. 따라서 현재 화소는 수직에지일 가능성이 많다고 할 수 있으므로 에지맵을 이에 따 라 수직에지로 갱신한다. 이와 같은 방법을 이용하여 에지맵을 갱신하 는 과정을 거치게 되면, 주변의 화소들을 고려하여 에지 방향이 잘못 판정될 가능성을 줄일뿐더러 주변 픽셀과 같은 방식을 이용하여 보간 하도록 만들어서 이전보다 더욱 자연스러운 영상을 얻을 수 있다.

G 채널이 보간되고 나면, R 채널과 B 채널을 보간하는 과정이 있 어야 한다. 베이어 패턴에서 R 과 B 채널은 G 채널 개수의 반이지만, 이미 G 채널이 보간된 상태이기 때문에 G 채널 보간 결과와 채널 간 상관관계를 이용하여 쉽게 얻을 수 있다. R 채널 보간과 B 채널 보간 은 완전히 같은 방법으로 보간된다. R 채널과 B 채널 보간에도 역시 G 채널과 같이 상, 하, 좌, 우 네 가지 방향을 고려하여 에지맵에 따라 가장 적절한 방향을 선택하는 과정을 거치게 된다. G 채널을 보간하기 위해 삼차 방정식을 이용한 반면, R 채널과 B 채널은 이미 보간된 G 채널과 채널간의 상관관계를 이용하여 일차식으로 구할 수 있다.

V	V	V
V	H	V
H	V	H

V	V	V
V	V	V
H	V	H

그림 3. 에지맵의 갱신

4. 실험결과

실험에서는 컬러 보간 성능 비교에 주로 사용되는 KODAK 영상 들을 사용하였다. 9 개의 KODAK 영상은 그림 4 와 같다. 이 실험을 위하여 원본 KODAK 영상을 베이어 패턴에 맞게 다운 샘플링하는 과

그림 4. KODAK 영상. 좌에서 우로 위에서 아래로 $1 \sim 9$.
정을 거쳤으며, 다시 컬러 보간 알고리듬을 이용하여 전체 컬러 영상을 획득하는 방법을 사용하였다.

제안하는 알고리듬의 성능을 살펴보기 위해 기존 알고리듬들과 PSNR과 실제 알고리듬을 통해 획득한 주관적인 화질을 비교하였다. 비교하는 알고리듬으로는 양선형 보간법(Bi-linear interpolation), 삼 차 스플라인 보간법(Cubic spline interpolation)[4]을 사용하였다.

표 1은 제안하는 방법과 기존 컬러 보간 방법의 PSNR값을 나타 낸다. 표 1에서 볼 수 있듯이 본 논문에서 제안하는 알고리즘은 PSNR 측면에서 최소 0.07 에서 최대 1.39 dB 까지 항상되었음을 볼 수 있었다. 또한, PSNR의 평균에서도 약 0.5 dB 정도 향상되었음을 볼 수 있다.

그림 5에서는 표 1에서 지시하는 A, B, C 알고리듬을 통해 복원한 8 번 영상의 확대된 모습이 나타나 있다. 그림 5 를 확인해보면 양선형 보간법이나 삼차 스플라인 보간법으로 복원된 영상보다 지퍼모양의 에러나 무지개 형태의 에러가 많이 사라진 것을 볼 수 있다.

표 1. 기존의 알고리듬과 제안된 알고리듬의 $\operatorname{PSNR}(\mathrm{dB})$ 비교
(A) 양선형. (B) 삼차 스플라인 〔5]. (C) 제안된 알고리듬.

영상	A	B	C
1	33.16	38.86	40.25
2	26.71	35.26	35.70
3	27.85	36.43	36.50
4	23.85	34.01	34.63
5	32.49	40.39	41.13
6	29.18	38.17	38.19
7	33.54	40.64	41.40
8	31.35	39.28	39.29
9	28.10	37.87	38.42
평균	29.58	37.88	38.39

5. 결론

본 논문에서는 에지맵 기반의 삼차 스플라인 보간 방법을 이용한

그림 5. 복원된 8번 영상의 주관적 화질 비교.
베이어 패턴 디모자이킹 방법을 제안하였다. 기존의 삼차 스플라인 보 간 방법에 더해 에지맵을 주변 경향성에 따라 새롭게 에지맵을 갱신하 는 과정을 거치게 된다. 에지맵을 갱신하는 과정을 거치면서 잘못된 에 지 예측 값을 바꿀 수 있고, 이에 따라 자연스러운 영상을 얻는 것을 목적으로 하였다. 본 논문에서 제안하는 알고리듬은 기존의 알고리듬 보다 PSNR 측면에 향상된 결과를 얻었다.

감사의 글

"본 연구는 미래창조과학부 및 정보통신산업진흥원의 대학 IT연구센 터 육성지원 사업의 연구결과로 수행되었음" (NIPA-2013-H0301-13-1011)

참고문헌

[1] B. E. Bayer, "Color imaging array," U.S. Patent 3971065, Jul. 1976.
[2] D. R. Cok, "Signal Processing method and apparatus for producing interpolated chrominance values in a sampled color image signal," U.S. Patent 4642678, Feb. 1987.
[3] S.C. Pei and I. K. Tam, "Effective color interpolation in CCD color filter arrays using signal correlation," IEEE Trans.Circuit Syst. Video Technol.,, Vol.13, No.6, pp.503-513, Jun. 2003.
[4] J. S. J. Li and S. Randhawa, " CFA demosaicking using cubic spline interpolation," in Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing, 2007, pp. I 865-868.
[5] J. S. J. Li, and S. Randhawa, "Color filter array demosaicking using high order interpolation techniques with a weighted median filter for sharp color edge preservation," IEEE Trans-actions on Image Processing, Vol.18, No. 9 ,2009.

