
제40회 한국정보처리학회 추계학술발표대회 논문집 제20권 2호 (2013. 11)

Distributed Interactive Application 을 위한

우선 순위 기반 오버레이 멀티캐스트

이형옥*, 남지승*
*전남대학교 전자컴퓨터공학과

e-mail:narcis99@nate.com

Priority-based Overlay Multicast

for Distributed Interactive Application

Hyung-Ok Lee*, Ji-Seung Nam*
*Dept of Electronic-Computer Engineering Chonnam University

요 약

Applying Application-Level Multicast technology (ALM) to Distributed Interactive Applications (DIAs)
becomes more and more popular. Especially for DIAs embedded priority that the sender forwards data to receivers
due to their respective priorities. The priority-based directed minimum spanning tree (PST) algorithm was
designed for these DIAs. However, the PST has no efficient priority selection and filtering mechanism. The system
will consume a tremendous amount of resource for reconstructing distribution tree and becomes unstable and
unscalable. In this paper, First, We propose a novel priority-based application level multicast algorithm: Predict-
and-Quantize for Priority with directed minimum Spanning Tree (PQPST), which can efficiently predict efficient
priorities for the receivers and quantize the predicted priorities to build the multicast distribution tree. Second, we
propose Priority Discrepancy Heuristic Mechanism (PDHM), which sets different thresholds of priority
discrepancy within the priority discrepancy interval to control the distribution tree construction can efficiently
decrease the repeated distribution tree construction, and we get the best heuristic priority discrepancy interval by
PQPST. According to the simulation results, the PQPST and PDHM can efficiently improve the performance of the
PST algorithm.

1. Introduction

The emergence of new Internet-based applications ---
Distributed Interactive Applications (DIAs) such as IPTV,
Teleconferencing and NetGames generally require multicast
capability for a successful operation, and the need for
efficient support of one- to many and many – to –many
applications, Moreover, DIAs allow a group of users
connected via a computer network to communicate and
collaborate in order to manipulate and accomplish a common
task [1]. DIAs embedded priority is a special set of DIAs,
because the sender node forwards data to receivers due to
their respective priorities. In recent years, many Application
Level Multicast protocols have been proposed [2]. Among
them, ALMI [3] and Yoid [4] have been designed for multi-
source application while Narada [5] and NICE [6] are for
single source application However, most of them cannot be
of significant use to these DIAs, whose receivers have
chances of getting the packets with different priorities.
Priority-based directed minimum spanning tree (PST) [7] is
the original application-level multicast protocol for these
DIAs. A typical example is the network multi-player games.
Nevertheless, when the scale increases, due to lack of
efficient priority selection mechanism, PST will consume
undesired amount of resource enough to make a system
unstable and unscalable.

2. Predict-and-quantize priority with MST(PQPST)

PQPST algorithm is based on the traditional PST
algorithm. To enhance the performance of the existing PST
applied in DIAs, the main work is that PQPST must get the
priority that can make new distribution tree before
implementing the application protocol. Hence, PQPST
considers priority prediction and priority quantization to
construct the multicast distribution tree.

In fact, not every priority changing from 0 to 1 can rebuild
the significant distribution tree. In many cases, after
rebuilding the distribution tree, because of priority changed, I
find the new distribution tree is the same or little different
from the previous one, and in some exceptional case lower
priority can build more direct path. So, it is not worth to
rebuild the distribution tree whenever application-level
priorities change.

PST algorithm lacks efficient priority selection
mechanism that can predict the efficient priority to be worth
rebuilding the multicast distribution tree. It is, in addition,
very costly to recalculate the distribution tree whenever
application-level priorities change, especially when the size
increases.

Our PQPST algorithm proposes an efficient priority
selection mechanism as described in this section. Obviously,

- 1367 -

제40회 한국정보처리학회 추계학술발표대회 논문집 제20권 2호 (2013. 11)

when receiver’s priority changes, the receiver node will
change to different paths whose delay must contain the delay
of k-shortest paths for the relative receiver. Therefore, we can
use the respective delay of k shortest paths and apply
Formula (1) to predict the priorities of the receivers for
relative k shortest paths.

According to the PST, if receiver j in the long path wants
to move to shorter path, it needs to increase the priority
enough to make)(' ijew >)(' kjew , where)(' kjew is the
modified cost of the direct edge between receiver node j and
the upper node k in the shorter path. That means the
predicted priority is the minimum)(jp that satisfies the
Formula (1) below, so according to Formula (2) I can predict
the priority.

w(e_ij)+p(j)w(e_sj)>w(e_kj)+p(j)w(e_sk) (1)

)()(
)()()(

ijkj

sksi

ewew
ewewjp

-
-

= (2)

3. Simulation and results analysis

To simulate the proposed algorithm, we have implemented
a simple game simulator – Billiards based event to evaluate
the performance of our PQPST algorithm compared to PST
algorithm. The red ball is the shooting ball and it does not
join the multicast session, and the white balls represent the
source node and receiver nodes. In order to simplify the
simulation, we adopt the single source model.
 According to the position of relative receiver in the
playing area, we calculate the relative priority for every
receiver after each event happened in the playing area.

The priority p is calculated depending on their distance
d(s,j) to the source node: p(j) = d(s, j)∕R, where R is the
maximum distance between source node and receiver in
application. Furthermore, we use respective receiver’s
quantized priority groups to divide the circularity area into
some concentric circles whose radiuses are the products of
each efficient priority by R. Therefore, the player moving
from one doughnut area to other doughnut area is equivalent
to the priority changing from one group to other group.
Obviously, it will greatly simplify the simulation

The metrics of evaluating the performance of the proposed
PQPST and the existing PST are described as follows:

 1. Number of distribution tree (NDT): NDT
represents the total number of distribution trees
which were built during the whole simulation.
 2. Number of new distribution tree (NNDT):
NNDT represents the total number of distribution
trees which have different delay and were built
adjacently during the whole simulation
 3. New distribution tree reconstruction rate
(NDTR): NDTR represents the quotient of NNDT
by NDT.

 From Fig.1, We can find that the NDT of PQPST is less
than 50% of the PST’s NDT in each system, especially, when
the system size is small. This means PQPST decreases the
large number of rebuilding distribution tree. Obviously,

PQPST can efficiently decrease the cost required for
reconstructing extra distribution trees. In fact, PQPST delete
all the rebuilding distribution trees that are led by exceptional
priority and non-efficient priority (cannot make new
distribution tree).

(Figure 1) Comparison of NDT in PQPST and PST

As shown in Fig.2, in each system size 6, 18 and 30 the

NNDT of PQPST are almost the same with PST’s. However,
in system size 12 and 24 the NNDT of PQPST are obviously
less than the PST’s. There are two reasons. First, PQPST
bases on kSP algorithm to predict the priority, and kSP
algorithm doesn’t consider all nodes for relative receiver
node. So PQPST ignores a few priorities, and cannot make
the entire new distribution tree. Second, NNDT of PST
contains the distribution tree led by exceptional priority, and
those distribution trees are bad for application.

(Figure 2) Comparison of NNDT in PQPST and PST

(Figure 3) Comparison of NDTR in PQPST and PST

- 1368 -

제40회 한국정보처리학회 추계학술발표대회 논문집 제20권 2호 (2013. 11)

According to Fig.3, Most NDTR of the PQPST are almost
reach 100%. Because PQPST algorithm can predict almost
priority that can construct the new distribution trees (NDT),
and reconstructs distribution trees only when the application
priority match the predicted priority.

However, the PST’s in most system are less than 60%.
Obviously, PQPST provides more efficient algorithm for
reconstructing the distribution tree. Namely, Compared to
PST, PQPST consumes much less system resource to build
the distribution tree and finally keep the system more stable
and scalable.

(Figure 4) Comparison of NDTR for each Dp

 Fig.4 shows comparison of NDTR among PDHA, PST and
PQPST. PQPST has the highest NDTR, and PDHA with
three Dps (0.06, 0.13 and 0.2) all have higher NDTR than
PST’s. Even though PST can make the entire efficient
distribution trees, it has the lowest of new tree construction
rate, and meanwhile, Even though PQSPST can’t make the
entire efficient distribution trees, it has the highest of new
distribution tree construction rate. It can prevent the
exceptional priority and non-efficient priority from building
the non-efficient tree that can make system unstable and
unscalable. Otherwise, The NDTR of PDHA falls between
PST’s and PQPST’s. Hence, PDHA is able to balance the
NDTR and NNDT within the priority discrepancy interval.
The same meaning is that PDHA can balance the PST and
PQPST.

Consequently, my proposed PQPST and PDHM are all
able to improve the performance of the PST algorithm in
different aspect. To be worth mention these two methods
have their own characteristics, and they can be adopted for
different systems by respective requirements.

4. Conclusion and future work

In this paper, First, we proposed a novel algorithm named
PQPST for Distribution Interactive Applications (DIAs). It
uses both quantized priority and delay to construct multicast
distribution trees. Second, we propose Priority Discrepancy
Heuristic Mechanism (PDHM), which sets different
thresholds of priority within the priority discrepancy interval
to control the distribution tree construction. Even though the
existing PST algorithm is the original protocol that uses
priority to build distribution trees for DIAs embedded the
priority, it lacks efficient priority selection mechanism. PST
algorithm can build all efficient distribution trees, but it has
very low new distribution tree reconstruction rate. This

shortcoming leads PST to have heavy cost in recalculating
the distribution tree and it is prone to make systems unstable
and unscalable.

According to the simulation results presented, our
proposed PQPST algorithm has the good ability of efficient
priority prediction and can control distribution tree
reconstruction efficiently. Moreover, PQPST has the best
new distribution tree reconstruction rate. Hence, PQPST can
solve this problem well, and at last keep system scalable and
stable. However, PQPST cannot predict all the efficient
priority. Yet, the PDHM can well balance the PST and
PQPST within the priority discrepancy interval.
Consequently, my proposed PQPST and PDHM are all able
to improve the performance of the PST algorithm. Moreover,
these two methods have their own advantages and
disadvantages. They can be adopted for different systems by
respective requirements.
In future, we first plan to improve the k-Shortest path
algorithm to predict more efficient priority. Second, we want
to adopt new heuristic approach to rank the priority
efficiency. Third, we intend to improve the simulation by
considering source-share model and by using more
preference metrics, and consider other network properties
(e.g. bandwidth, load balance etc.) to construct the
distribution tree and improve the system performance. At last,
we try to adopt fire-new algorithm to replace the PST
algorithm and my proposed algorithm in this paper, because
these

 This research was supported by the MKE(The Ministry of
Knowledge Economy), Korea, under the ITRC(Information
Technology Research Center) support program (NIPA-2013-
H0301-13-1006) supervised by the NIPA(National IT
Industry Promotion Agency)

References

[1] U. M. Borghoff and J. H. Schlichter, Computer-Supported
Cooperative Work. Springer, Berlin, Heidelberg, New
York, 2000.

[2] Hosseini, D. T. Ahmed, S. Shirmohammadi, and N. D.
Georganas. A survey of application-layer multicast
protocols. IEEE Commun. Surveys and Tutiruals, 2007.

[3] D. Pendarakis, S. Shi, D. Verma, and M. Waldvogel,
"ALMI: An application level multicast infrastructure,"
3rd Usenix Symp. Int’l Technol. and Syst., Mar. 2001, pp.
49-60.

[4] P. Francis. “Yoid: Extending the Internet Multicast
Architecture,” unrefereed report, available at
http://www.icir.org/yoid/docs/yoidArch.ps.gz, Apr. 2000.

[5] Y. Chu, S. Rao, and H. Zhang. “A Case For End-System
Multicast,” In Proc. ACM SIGMETRICS, Santa Clara,
CA, USA, June 2000.

[6] D. A. Tran, K. A. Hua, and T. T. Do, "A peer-to-peer
architecture for media streaming," IEEE J. Sel. Areas
Commun., vol. 22, no. 1, Jan. 2004, pp. 121-133.

[7] J. Vogel, J. Widmer, D. Farin, M. Mauve, W. Effelsberg.
“Priority Based Distribution Trees for Application Level
Multicast,” ACM NetGames, Redwood City, CA, 2003,
pp. 148-157.

- 1369 -

