Ti₃AlC₂의 800-1100°C, SO₂ 가스 분위기에서의 부식

Corrosion of Ti₃AlC₂ at 800-1100°C in SO₂ gas atmosphere

원성빈^{*}, Chunyu, Xu, 황연상, 이동복 ^{*}성균관대학교 신소재공학과(E-mail:mungts@naver.com)

 $\overline{\mathbf{z}}$ 록: Ti₃AlC₂ was corroded between 800 and 1100°C in an Ar-0.2% SO₂ gas atmosphere according to the equation: Ti₃AlC₂ + O₂ \rightarrow rutile-TiO₂ + α -Al₂O₃ + (CO or CO₂). The scales that formed on the Ti₃AlC₂ were thin and rich in α -Al₂O₃, whose growth rate was exceedingly slow. The TiO₂ was present either as the outermost surface scale or a mixture inside the α -Al₂O₃-rich scale. In the Ti₃AlC₂, the activity and diffusivity of Ti were low, whereas those of Al were high. This was the main reason for the superior corrosion resistance of Ti₃AlC₂ over TiAl.

1. 서론

The nanolaminated ternary compound Ti_3AlC_2 has attracted enormous attention due to its superior metallic and ceramic properties. It is light, electrically and thermally conductive, easily machinable, ductile with a high stiffness-to-hardness ratio, damage tolerant, maintains strength at high temperatures, and is resistant to thermal shock and chemical attack. However, in order to utilize Ti_3AlC_2 as structural a component in a variety of corrosive environments, its corrosion characteristics require investigation.

In this study, the Ti_3AlC_2 compound was fabricated via the powder metallurgical process and corroded in an Ar-0.2%SO₂ gas atmosphere at 800–1100°C for up to 180 h. The aim of this study is to characterize the corrosion behavior of Ti_3AlC_2 in an Ar-0.2%SO₂ atmosphere, which has not adequately been explored. Pure TiAl was used as a benchmark as it is an important intermetallic compound for high-temperature structural applications. The present study would aid the comprehensive understanding of Ti_3AlC_2 under diverse corrosive environments at high temperatures.

2. 본론

Powders of TiC_x (< 45 μ mØ, x = 0.6) and Al (< 45 μ mØ, 99.7% purity) were weighed in a molar ratio of 3:1.1, mixed in a SPEX shaker mill in Ar for 10 min, and hot pressed at 1400°C under 25 MPa for 60 min in flowing Ar gas to synthesize 19 mmØ x 10 mm bulks. The synthesized Ti₃AlC₂ bulks were corroded at 800, 900, 1000, and 1100°C in flowing commercial-grade Ar(99.999% purity)-0.2% SO₂(99.9% purity) gas. The weight changes during corrosion were continuously monitored as a function of time using a TGA. Each sample was suspended by a platinum wire and heated in the hot zone of the furnace attached to the TGA. For comparison purposes, the hot forged monolithic Ti-50.56Al (at.%) plate from the vacuum arc melted and the HIP-treated ingot corroded in the identical Ar-0.2% SO₂ gas. The samples were investigated by means of a SEM equipped with an EDS, an XRD with Cu-Ka radiation, AES and TEM. The TEM sample was prepared by milling in a FIB system with a liquid gallium metal ion source and a maximum accelerating voltage of 30 kV. After carbon coating, the sample was examined with a 200 kV TEM equipped with a 5-nm spot size EDS.

Fig. 1 shows the SEM/XRD/TEM results of the synthesized Ti_3AlC_2 . The SEM image shows the fully dense sample possessing lamellar grains with an aspect ratio as high as five (Fig. 1a). The sample density was similar with the theoretical density of Ti_3AlC_2 (4.25 g/cm³). The XRD pattern indicates that the monolithic Ti_3AlC_2 was successfully synthesized (Fig. 1b). The lamellar Ti_3AlC_2 grains consisted of nanolaminates (Fig. 1c). Their SAED is shown in Fig. 1d, where the electron beam is parallel to the [1100] direction. The hexagonal lattice parameters were derived as a=0.307 nm and c=1.85 nm, which matched those of Ti_3AlC_2 .

Fig. 2 shows the TEM analytical results of Ti_3AlC_2 after corrosion at 800°C for 60 h. The scale was approximately 0.6 µm-thick (Fig. 2a). Fig. 2b displays elemental concentration profiles obtained from the EDS spot analysis. Spot 8 is the scale/matrix boundary. The carbon profile shown in Fig. 2b was suspicious, as it was notoriously difficult to quantify carbon. The scale was a (Al₂O₃, TiO₂)-mixture (Fig. 2b). Sulfur was detected only at spot 2 as 1.3%, indicating that the oxidizing tendency was much stronger than the sulfidizing tendency. In Fig. 2c, continuous nucleation of numerous, tiny oxide crystallites with round or ellipsoidal shapes occurred as opposed to epitaxial growth of oriented oxides. The corresponding elemental maps shown in Fig. 2d indicate that Al_2O_3 was intermixed with a lesser amount of TiO₂. The good corrosion resistance of Ti_3AlC_2 should be attributed to the predominant formation of the highly stoichiometric Al_2O_3 . This favors formation of the protective Al_2O_3 scale on Ti_3AlC_2 in the Ar-0.2% SO₂ gas.

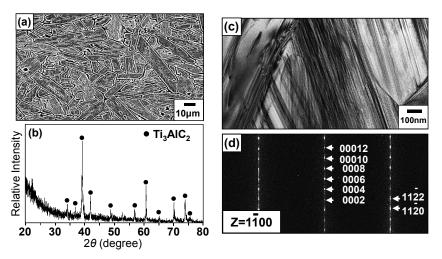


Fig. 1. Ti₃AlC₂ synthesized. (a) etched SEM image, (b) XRD pattern, (c) TEM image of the matrix grains, (d) SAED pattern of (c).

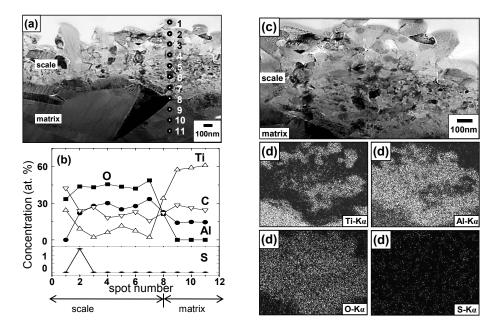


Fig. 2. Ti_3AlC_2 after corrosion at 800°C for 60 h in Ar-0.2% SO₂ gas. (a) TEM image, (b) concentration profiles of Ti, Al, C, O, and S, (c) TEM image of the scale, (d) maps of Ti, Al, O, and S.

3. 결론

Fully dense, monolithic Ti_3AlC_2 compounds were corroded at 800, 900, 1000, and $1100^{\circ}C$ for up to 180 h under an Ar-0.2% SO₂ gas atmosphere. The formed scales were thin and consisted primarily of α -Al₂O₃, with a much lesser amount of rutile-TiO₂. Since the activity and diffusivity of Al were higher than those of Ti in Ti_3AlC_2 , protective α -Al₂O₃-rich scales formed, effectively suppressing sulfidation. Under identical corrosion conditions, the scales formed on TiAl consisted of thick, triple layers, viz. an outer TiO₂ layer containing some Al₂O₃ particles, an intermediate (Al₂O₃, TiO₂)-mixed layer, and an inner, narrow (TiS, Ti_2 S)-mixed layer. In case of TiAl, titanium in TiAl was active and diffused quickly, so as to oxidize to TiO₂ and sulfidize to TiS and TiS₂, simultaneously. Aluminium in TiAl was inactive and did not diffuse fast. Hence, unlike Ti_3AlC_2 , TiAl could not form the α -Al₂O₃-rich scale.

감사의 글

본 연구는 2010년도 교육과학기술부의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업 (2010-0023002)입 니다.