Rotation Invariant Face Detection with Boosted Random Ferns

Boosted Random Ferns를 이용한 회전 불변 얼굴 검출

  • Kim, Hoo Hyun (Department of Electronics and Computer Engineering, Hanyang University) ;
  • Cho, Dong-Chan (Department of Electronics and Computer Engineering, Hanyang University) ;
  • Bae, Jong Yeop (Department of Electronics and Computer Engineering, Hanyang University) ;
  • Kim, Whoi-Yul (Department of Electronics and Computer Engineering, Hanyang University)
  • Published : 2013.06.26

Abstract

본 논문은 Boosted Random Ferns 기반의 회전 불변 얼굴 검출 방법을 제안한다. 기존 Random Ferns 의 경우 특징값을 추출할 때 임의로 선택한 두 픽셀의 밝기값 비교를 통하여 이진 특징값을 추출한다. 이 경우 해당 픽셀의 밝기값에 잡음이 포함되면 특징값이 부정확하게 추출되는 문제가 있다. 본 논문에서는 이러한 문제를 해결하기 위하여 임의로 두 블록을 선택하고 해당 블록내 밝기값의 평균을 비교하여 이진 특징값을 추출하였다. 또한 픽셀 위치를 임의로 선택하여 ferns 를 구성하였던 기존의 방법 대신 최고의 분류 성능을 가지는 fern 들을 이용하여 분류기를 구성하기 위해, AdaBoost 의 방법을 Random Ferns 에 맞게 변경하였다. Boosted Random Ferns 를 트리 구조의 cascade 노드에 방향과 각도에 따라 배치하여 연산 속도를 향상시키고 false-positive를 줄이는 효과를 보았다. CMU Rotated Face Database 를 사용하여 평가하였을 때, 기존 Random Ferns 는 false-positive 의 수가 57 개 일 때 66%의 검출률을 보인 반면, Boosted Random Ferns 는 false-positive 의 수가 45 개 일 때 88%의 검출률을 보였다.

Keywords