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ABSTRACT: State Highway Agencies (SHAs) have started utilizing cost-plus-time bidding (A+B bidding) since 
Federal Highway Agency (FHWA) declared it operational on May 4, 1995. Although this technique has successfully 
accelerated many projects by incorporating construction time in the bidding competition, a framework to illustrate the 
interactions of incentive/disincentive (I/D) rates on the competitiveness of contractors participating in the bid competition 
is yet to be developed. In a previous research, authors indicated that for each bid competition there is an efficient cap for 
I/D rates which are dictated by the capabilities of contractors in project acceleration. However, the results of previous 
study were based on the assumption that there is a statistically significant relationship between cost and time. In this 
study, the entire cost-plus-time projects implemented by the Oklahoma Department of Transportation (ODOT) were 
investigated. Then the significance of relationship between cost and time were analyzed for each contractor utilizing 
Analysis of Variance (ANOVA) technique, and the price-time function of each contractor was determined by regression 
analysis. The results of the analysis indicate that there is a significant relationship between cost and time for the majority 
of contractors. However, a quadratic relationship is not always significant and for some contractors a linear price-time 
relationship is significant. The results of this project can be used not only by ODOT to optimize the 
incentive/disincentive rates but also by contractors to determine the most competitive strategies of other bid participants.  

Keywords: Cost-Time Relationship; ANOVA; Regression; A+B Bid; Incentive/Disincentive Rate; Bid Competition 
1. INTRODUCTION 

In previous studies it was indicated that the Unit Time 
Value (UTV) determined by SHAs in price time bi-
parameter bidding can affect the competitiveness of 
contractors [1]. It was suggested in this study that 
characteristics of contractors and their project 
acceleration capabilities be taken into account when unit 
time value or incentive/disincentive rate are determined. 
In addition, very large or very small UTVs might 
significantly lower the competitiveness of certain 
contractors and result in a less competitive bid 
environment. It was also indicated that for every price-
time bi-parameter bidding, there is a maximum threshold 
for UTV. For UTVs greater than that threshold there 
would be no contractor capable of accelerating 
construction with that rate.  

In previous research studies performed by the authors it 
is indicated that if SHAs identify the price time 
relationship for the contractors participating in price time 
bi-parameter bidding, UTVs or incentive/disincentive 
rates can be determined more efficiently. However, the 
results are dependent on the validity of the assumption 
that for each contractor there is a particular cost-time 
relationship. Also to a particular contractor, there is an 
optimum cost-time point for every construction contract 
[2].  

In this study, the actual A+B bidding data of Oklahoma 
Department of Transportation (ODOT) are analyzed and 
cost-time relationship models are created for contractors 
with sufficient number of A+B data. The models 
developed in this study use the historical bid data 
available to the public in the website of ODOT. The 
public access to this data enables all the current and 
prospective contractors of ODOT to study the bidding 
pattern of their competitors and adjust their strategies 
accordingly. It also provides ODOT with a methodology 
to determine the cost-time relationships of contractors.     
The objective of this paper is to investigate the actual bid 
data of contractors participating in A+B bidding in 
Oklahoma Department of Transportation (ODOT) in 
order to determine the significance of cost-time 
relationships. 
 

2. BACKGROUND 
 

In price-time bi-parameter bidding (A+B bidding), the 
contract duration is determined by competition during the 
bid process. This procurement method incorporates value 
of construction time with the bid price in evaluating 
contractors’ total combined bid (TCB). The successful 
bidder is the contractor who submits the lowest TCB 
using the following formula: 
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                  (Eq. 1)              
 

Where, A is contractor’s bid price, UTV is the unit time 
value, and t is construction time. Unit time value (UTV) 
represents the cost of delays to the owner and needs to be 
calculated by the owner for every project. 

Arditi et al. [3] suggest that the use of “A+B Bidding” 
in association with Incentive/Disincentive (I/D) contracts 
and its likely impact on contract efficiency need to be 
further explored. They expect that contract durations will 
be more realistic when the durations are set by the 
winning bidder compared to when it is set by the owner 
in I/D contracts. They also expect that “A+B Bidding” 
competition results in the elimination of inefficient 
contractors. Herbsman et al. [4] have also felt the need to 
study the interactions of A+B bidding and I/D provisions. 
In order to study the impact of I/D provisions on the A+B 
bidding, the cost-time relationships need to be determined. 

The review of literature indicates that researchers and 
practitioners have shown great interest in identifying the 
cost-time relationship and they have come up with mixed 
results [5-7]. One important area that cost functions are 
necessary is project compression. With this cost functions 
for each task in a critical path method (CPM), project 
managers would be able to optimize the compression by 
minimizing both the duration and cost of project. Both 
linear and non-linear cost functions have been developed 
in the literature [5]. Moussourakis et al [5] believes that 
the type of cost function is dependent upon the nature of 
activity. In a study to find the time-cost relationship in 
Australian building construction projects, Love et al. [8] 
conclude that project cost is a poor measure of project 
time without considering project types. They developed a 
model to predict the time of building construction based 
on ground floor area and then the number of floors. 
Construction cost and time for undertaking a specific 
construction project are interrelated [9, 10]. Trost and 
Oberlender [11] have created a model to predict the 
accuracy of early construction cost estimates. According 
to their model, Bidding and Labor Climate is one of the 
significant factor groups influencing the accuracy of 
construction cost estimating. Since project schedule is 
one of the factors in this group, it can be inferred that 
project schedule can affect the accuracy of construction 
cost estimates. Callahan et al. [2] report that for a specific 
construction company, there is an optimum cost-time 
balancing point for every construction contract where 
construction cost is minimum.  

 
2.1 Total Combined Bid Iso-Map 

In A+B bidding, contractors are allowed to adjust their 
Total Combined Bid (TCB) by trading-off between 
contract time and bid price. As can be seen in Eq. 1, the 
contractor would be able to increase the construction 
duration (t) and keep the TCB constant by discounting the 
original bid price (A). Since TCB is the only factor that 
defines the winner of A+B bidding contract, all the 
bidding strategies that result in the same TCB have the 
same level of competitiveness. In fact, with a given UTV, 
Eq. 1 suggests that there are infinite combinations of bid 

price (A) and contract time (t) that give the same TCB. In 
a price-time right-angled coordinate diagram, these 
combinations form a line, which has been called Iso_line 
by Shen et al. (1999) as shown in Fig. 1. The slope of the 
Iso-line is determined by the UTV and since all the points 
on the line have the same TCB, the line is called TCB 
Iso-line. Therefore, A+B bidding can be reduced to a 
single parameter bidding by considering the total 
combined bid. 
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Figure 1. Contractor’s overall competitiveness: TCB 

Iso-Line [10] 

 
2.2 Time-Cost Function 

To a particular contractor, there is an optimum cost-
time point for every construction contract [2]. At this 
point, the contractor would have the lowest construction 
cost. In general, the interrelationship between 
construction cost and time can be expressed in a curve as 
shown in Figure 2 [12]. Upon development of the 
construction cost-time curve, the bid price-time 
relationship can be developed by adding a certain profit 
margin to the construction cost. Since the bid price-time 
curve is first decreasing and, after reaching its minimum, 
then increasing, several studies have suggested a 
quadratic or second-order polynomial function to 
approximate the relationship between bid price (A) and 
construction time (t) [10, 12-14]. 

 

                   (Eq. 2)  
Shen et al. (1999) suggests estimating the constants of 

the quadratic equation of time-price relationship by 
assuming three feasible bid plans based on the 
contractor’s background and previous experience. One of 
these points is the shortest time bid plan which is also 
called the crash point. This is a point where the contractor 
is not able to compress the project duration further. The 
next point is the most likely bid plan by which the 
contractor tends to offer. And the third point is the lowest 
construction cost bid plan which is also called the normal 
point. By using these three data points and incorporating 
them in Eq. 2, three different equations are developed that 
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can be used to solve for the three unknown constant 
values (a, b1, b2). 
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Figure 2. Construction cost and bid price versus time 
[12] 

3. DATA PREPARATION 

The data used in this study have been collected from 
the website of Oklahoma Department of Transportation 
(ODOT). It includes all the completed price-time bi-
parameter bidding projects that ODOT has ever let. For 
the purpose of regression analysis, only the contractors 
that have three or more number of A+B projects are 
selected for further analysis in this study. The historical 
data base contains 58 data points for 14 contractors. The 
projects examined for building the formula for 
construction cost as a function of duration are shown in 
Table 1. The award bid is the price that the contractor bids. 
The final construction cost is the final construction cost 
excluding incentive/disincentive. The bid days are the 
duration proposed by the contractor during the A+B 
bidding process. The final contract time is the bid day that 
is adjusted for the weather, additional work, or change 
orders. Days used is the number of days that the 
contractors used to from the start of project to substantial 
completion. Also Incentive/Disincentive rates, Incentive 
cap, and Incentive paid to the contractor or the 
Disincentive that the contractor is charged are available 
for each project.  

Because the scopes of projects are different, two 
indices are defined to represent the time and cost of each 
project in a manner that can be compared together. The 
equations utilized to calculate cost and time indices are as 
below: 
 

 (Eq. 3) 
 

 (Eq.4) 
 

Table 2 shows the time and cost indices for Plains 
contractor. The time and cost indices are calculated for all 
the projects indicated in Table 1 as per the above 
mentioned equations. Then the analysis of variance is 

performed to investigate the relationship between cost 
and time indices, determining whether or not the effect of 
independent variable, time index, on the dependent 
variable, cost index is significant. 
 
Table 2. Time and Cost Indices for Plain Contractor 

Contractor 
Contract 

ID 

Cost 

Index 

Time 

Index 

Plains Bridge 

Contracting of 

Oklahoma, LLC 

060121 0.0439 0.0482 

060386 0.0182 -0.0333 

070206 0.0183 -0.2179 

070206 0.0266 -0.2416 

 

4. DATA ANALYSIS 

For each contractor cost index trends are investigated 
based on time indices. The entire analysis is explained for 
Plains contractor. The cost index is fit to linear and 
quadratic functions of time index. A quadratic term, 
DaySq, is created in the analysis since polynomial effects 
such as Time*Time cannot be specified in the statistical 
model. The model is run for both linear and quadratic 
relationships between cost and time indices using SAS® 
software. 
 
4.1 Linear Regression 

 

 The analysis of variance and parameter estimates 
tables for linear regression are displayed in Table 3. The 
F statistic of the linear model is not significant (F = 1.03, 
p = 0.4168), indicating that the model is not a good fit for 
a significant portion of variation in the data. The R-square 
indicates that the model only accounts for 34% of the 
variation in cost index. The fitted equation for this model 
is: 

 
Cost index = 0.0323 + 0.04993 × Time index     (Eq.5) 

 
The graphical representations of output statistics are 

available in Figure 3. These diagnostics indicate an 
inadequate model because 1) the plots and studentized 
residual versus predicted value show a clear quadratic 
pattern, 2) the normal quantile plot of the residuals and 
the residual histogram are not consistent with the 
assumption of Gaussian errors because the residuals 
themselves still contain the quadratic behavior that is not 
captured by the linear model, and 3) the plot of cost 
versus the predicted value exhibits a quadratic form 
around the 45-degree line that represents a perfect fit. 
Figure 4 shows the Fit Plot consisting of a scatter plot of 
the data overlaid with the regression line, and 95% 
confidence and prediction limits. This plot also indicates 
that the model fails to capture nature of the data. The 
results of the linear regression analysis provide strong 
evidence that the TimeSQ needs to be added to the model. 
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Table 1 Historical A+B Bidding Information at Oklahoma Department of Transportation 

Contractor 

Contract 

ID 

Award 

bid (k) 

($) 

Final 

construction 

cost (k) ($) 

Final 

contract 

time (d) 

Days 

used 

Incentive 

/disincentive 

($/d) 

Incentive 

cap (k) 

($) 

Incentive 

paid (k) 

($) 

Becco 

060001 21,126 20,744 375 383 10,000 350 -80 

060001 21,126 20,694 275 293 10,000 350 -30 

040221 16,879 16,724 490 428 15,000 900 900 

060306 1,947 1,964 125 154 5,000 625 -145 

080425 3,971 3,864 210 159 10,000 800 500 

DUIT  

090326 27,597 28,796 550 522 7,500 750 210 

040211 4,867 5,279 191 171 7,500 150 150 

040211 4,867 5,279 145 125 7,500 150 150 

060301 18,736 19,923 369 333 10,000 3,690 360 

070175 27,499 28,887 90 93 5,000 200 -15 

Haskell 

Lemon  

060214 4,072 4,153 210 204.3 2,000 420 11.5 

060341 10,750 10,808 273 273 5,000 300 -65 

070174 4,148 4,573 173 186 4,000 320 -180 

080166 4,444 4,679 200 157 2,000 120 84 

090003 7,400 7,671 135 73 5,000 300 300 

APAC-

Oklahoma 

40194 3,883 3,329 198 181 10,000 150 150 

40348 3,214 3,200 120 87 3,334 10 10 

060333 2,174 2,011 125 104 10,000 200 200 

080319 4,400 4,405 60 66 7,000 420 -42 

APAC-

Central 

080346 2,421 2,452 228 228 2,000 90 -156 

080365 2,806 3,039 200 170 7,000 210 210 

090536 4,320 4,283 231 231 4,000 200 200 

090536 4,320 4,447 60 51 4,000 100 36 

Allen  

050185 1,141 1,061 100 84 2,000 60 30 

060383 6,347 6,249 300 249 5,500 275 275 

070357 7,778 7,953 238 237 5,000 350 0 

080421 4,341 4,060 220 176 2,500 150 110 

C-GAWF  

080414 368 377 40 17 2,000 80 46 

080415 685 684 50 18 2,000 80 64 

090415 990 1.2 90 64 3,250 146.3 84.5 

M.J. Lee  

070021 1,071 982 105 71 5,000 150 150 

070028 1,353 1,352 125 84 5,000 150 150 

070200 3,518 3,467 190 164 3,350 201 83.8 

Muskogee  

080006 3,786 3,839 446 446 3,500 105 0 

080299 5,132 6,783 90 38 9,000 405 405 

080299 5,132 6,781 60 37 18,000 1,080 407.3 

090035 2,320 2,401 170 213 2,000 340 -86 

OBC 

080121 6,480 7,858 250 175 6,500 487.5 487.5 

080121 6,480 8,245 35 25 10,000 100 100 

090335 1,370 1,378 100 87 3,750 75 48.8 

100609 1,174 1,257 89 70 3,000 150 57 

Plains  

060121 4,078 4,257 166 174 2,500 100 -20 

060386 2,359 2,402 90 87 6,000 360 18 

070206 4,319 4,398 179 140 3,250 130 123.5 

070206 4,319 4,434 149 113 2,500 87.5 87.5 

Sewell  

050639 18,464 18,474 473 493 4,500 1,643 -90 

050639 18,464 18,334 70 40 1,667 117 50 

070102 865 853 30 18 4,000 60 44 

080374 6,290 5,993 217 172 5,000 300 23 

090624 4,603 4,481 263 263 3,550 320 0 

Wittwer 

070296 1,597 1,412 90 88 2,000 60 10 

080409 1,547 1,498 75 5 2,500 175 175 

080411 660 651 80 28 1,500 120 75 
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Table 3. Analysis of Variance Procedure for Linear Model

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 1 0.000149 0.000149 1.03 0.4168 

Error 2 0.000289 0.000145   

Corrected Total 3 0.000439    

R-Square = 0.3402                           C.V. = 44.97106                 Root mean square error = 0.01203 
Adjusted R-Square = 0.0103                 Cost Mean = 0.02675            C.V. = Root mean square error/Cost Mean 
 

Variable DF Parameter Estimate Standard Error t Value Pr > |t| 

Intercept 1 0.03230 0.00813 3.97 0.0579 

Time 1 0.04993 0.04917 1.02 0.4168 

 
 

 

 
Figure 3. Fit Plot for Cost in the Linear Model 
 

Figure 4. Fit Statistics for Cost in the Linear Model 

 
4.2 Polynomial Regression 

Consider a response variable Y that can be predicted by 
a polynomial function of an independent variable X. The 
polynomial function shown below is determined after 
estimating β0, the intercept; β1, the slope due to X; and β2, 
the slope due to X2. 

 

              (Eq. 6) 
For the observations i = 1,2,…,n. 
 

Table 4 indicates the ANOVA table and parameter 
estimates for the new model. The overall F statistic is 
significant (F = 102.66, p < 0.1). The R-square has 
increased from 0.3402 to 0.9952, indicating that the 
model now accounts for 99.5% of the variation in Cost 
Index. All effects are significant with p < 0.06 for each 
effect in the model. The fitted equation is now 

 
Cost index = 0.02655 + 0.30414 × Time + 1.24476 × 

TimeSQ                                  (Eq.7) 
 

Figure 5 shows the data, predictions, and residuals by 
Time index. These plots confirm that the quadratic 
polynomial model successfully model the cost index for 
contractor Plains.  

Figure 6 shows the panel of diagnostics for this 
quadratic polynomial model. These diagnostics indicate 
that this model is considerably more successful than the 
corresponding linear model because 1) the plots of 
residuals and studentized residuals versus predicted 
values indicate no obvious patterns, 2) the points on the 
plot of the dependent variable versus the predicted values 
are on the 45-degree line, indicating that the model 
successfully predicts the behavior of the cost index.  

 

Table 4. Analysis of Variance Procedure for Quadratic Model 

483



 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 0.000437 0.000218 102.66 0.0696 

Error 1 0.000002 0.000002   

Corrected Total 3 0.000439    

R-Square = 0.9952                          C.V. = 5.45088                  Root mean square error = 0.00146 
Adjusted R-Square = 0.9855                Cost Mean = 0.02675            C.V. = Root mean square error/Cost Mean 
 

Variable DF Parameter Estimate Standard Error t Value Pr > |t| 

Intercept 1 0.02655 0.00110 24.08 0.0264 

Time 1 0.30414 0.02267 13.42 0.0474 

TimeSQ 1 1.24476 0.10708 11.62 0.0546 

Figure 5. Fit Plot for Cost in the Quadratic Model 

 
Figure 6. Fit Statistics for Cost in the Quadratic Model 

5. RESULTS 

The ANOVA and regression analysis is performed for 
all the contractors individually. The results of the analysis 
are shown in Table 5. For each contractor the ANOVA 
reveals that whether or not the relationships between the 
dependent and independent variables (Cost Index and 
Time index respectively) are significant. The regression 
analysis also results in the linear and quadratic equations 
that relates cost index to time index combined with the R-
squares which is a goodness of fit factor.  

As can be seen in the results of the analysis, for 
Wittwer, The Cummins, and C-GAWF there are only 
three data points to fit the price-time curve. For these 
contractors, the quadratic equation is the curve that passes 
through all the data points which results in R-square of 
equal to 1. For Wittwer and C-GAWF the linear 
regression can explain the relationship between cost index 
and time index as well. The R-squared of the linear 
curves in this case are 0.7880 and 0.9617 accordingly 
with P values of 0.3046 and 0.1255 indicating that the 
linear equation can also relate dependent variable to 
independent variable. However, for the Cummins the R-
squared value for linear equation is very low (0.0531) 
with P value of 0.8519 indicating that the relationship 
between dependent and independent variables cannot be 
explained by a linear equation. For Sewell and Plains the 
P values for polynomial regression are 0.0636 and 0.0696 
respectively indicating a significant relationship between 
time index and cost index with confidence level of 90%. 
Also the R-squared values for these contractors are 
0.9364 and 0.9952 meaning that the fitted curves would 
predict 93.64% and 99.52% of variations in cost index. 
The ANOVA and regression results for the Haskell 
Lemon indicate the lowest R-squared values for both 
linear and polynomial regression analyses. For other 
contractors, the R-squared value ranges from 0.6371 to 
0.9250. Although for some contractors the P value is 
larger than 0.1, the large R-squared value indicates that 
the fitted curve accounts for variation in the Cost index.  
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Table 5. Results of ANOVA and Regression Analyses for ODOT Contractors 

Contractor Data 
Linear Regression Polynomial Regression 

P 

Value Equation 

R-

squared 

P 

Value Equation 

R-

squared 

Wittwer 3 0.3046 
y = -0.1036 

x - 0.109 
0.7880 - y = -0.2498 x2 - 0.3305 x - 0.1228  1.0000 

The 
Cummins 

3 0.8519 
y = 0.0085 
x - 0.0111 

0.0531 - y = -0.2235 x2 - 0.0578 x - 0.0004  1.0000 

Sewell 5 0.9752 
y = -0.0017 
x - 0.0192 

0.0004 0.0636 y = 0.7991 x2 + 0.3095 x - 0.0194  0.9364 

Plains 4 0.4168 
y = 0.0499 
x + 0.0323 

0.3402 0.0696 y = 1.2448 x2 + 0.3041 x + 0.0266  0.9952 

OBC 4 0.0636 
y = -1.4800 
x - 0.2034 

0.8768 0.3189 y = 5.3035 x2 + 0.8055 x + 0.0171  0.8983 

Muskogee 4 0.0773 
y = -0.4238 
x + 0.0980 

0.8513 0.3674 y = 0.2565 x2 - 0.3402 x + 0.0778  0.8650 

M.J. Lee 3 0.7786 
y = 0.1378 
x + 0.0034 

0.1162 - 
y = 104.7365 x2 + 48.6140 x + 

4.6767  
- 

C-GAWF 3 0.0171 
y = 0.4702 
x + 0.2974 

0.9993 - y = 0.2338 x2 + 0.6828 x +0.3398 1.0000 

Allen 4 0.1672 
y = 0.4159 
x - 0.0235 

0.6936 0.5527 y = 0.4420 x2 + 0.4992 x + 0.0243  0.6945 

APAC-
Central 

4 0.2018 
y = -0.3607 
x + 0.0021 

0.6371 0.2018 y = 98.9734 x2 + 0.0292 x + 0.0289  0.6371 

APAC-
Oklahoma 

4 0.9231 
y = 0.0329 
x - 0.0517 

0.0059 0.2739 y = 3.5154 x2 + 0.6018 x - 0.0972  0.9250 

Haskell 
Lemon 

5 0.7572 
y = 0.0334 
x + 0.0476 

0.0368 0.8120 y = 0.4815 x2 + 0.2244 x + 0.0462  0.1880 

DUIT 5 0.1292 
y = -0.2204 
x + 0.0495 

0.5901 0.2044 y = 2.6500 x2 + 0.0360 x + 0.0450  0.7956 

Becco 5 0.1625 
y = 0.0552 
x - 0.0126 

0.5311 0.3518 y = 0.1712 x2 + 0.0580 x - 0.0172 0.6482 

 
For OBC, Muskogee, and Allen linear regression is 

performing better than polynomial regression in terms of 
P-values. For Duit and Becco the linear regressions are 
performing better in terms of P-values however, the R-
squared values of polynomial regression are larger 
indicating that the quadratic curves are a better fit for the 
data. There are only three points to fit a curve for M.J. 
Lee and linear regression is not indicating significant 
relationship between independent and dependent 
variables. In addition, the quadratic curve passing through 
the only three available points in the data set is over-
fitting the data. The performance of linear and polynomial 
regression models for the APAC-Central are similar. 
Therefore for this contractor the linear model is selected 
to relate cost index to time index. For APAC-Oklahoma 
polynomial regression model outperforms the linear 
model with R-squared value of 0.9950 and P-value of 
0.2739. 

 
The fitted model for Sewell is: 
 

(Eq.8) 

where C = final construction cost 
    D = days used 
    C0 = award bid 
    D0 = final contract time 
 
By rearranging the equation we will have the following 

equation: 
 

 
(Eq.9) 

This equation illustrates the internal relationship 
between the construction cost and time for Sewell. The 
functional relationship between construction cost and 
time is determined by deciding (D0, C0). The (D0, C0) can 
be SHA’s or contractors’ estimate about the expected 
duration and construction cost of the project at the normal 
point. The normal point is the location on the price-time 
curve where the construction cost is the minimum. Table 
6 shows the price-time functions for different contractors 
participating in price-time bi-parameter bidding in 
Oklahoma Department of Transportation.  
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 Table 6. Results of ANOVA and Regression Analyses for ODOT Contractors 

Contractor Equation 

Wittwer 
 

The Cummins 
 

Sewell 
 

Plains 
 

OBC 
 

Muskogee 
 

C-GAWF 
 

Allen 
 

APAC-Central 
 

APAC-Oklahoma 
 

DUIT 
 

Becco 
 

 
 
 

8. CONCLUSIONS 

In this paper the historical A+B bid data of Oklahoma 
Department of Transportation were analyzed to identify 
the time-cost relationships. Only contractors that had 
performed three or more A+B resurfacing projects were 
selected for the purpose of this study. This was due to the 
fact that three is the least number of data points to fit a 
quadratic curve. The review of literature indicated that 
both linear and quadratic relationship has been considered 
to model the relationship between time and cost. 
Therefore, both linear and polynomial analyses were 
performed using SAS® software. Since the scope of 
projects was not identical, normalized cost and time 
indices were calculated and used in the ANOVA and 
regression analysis. The results of ANOVA and 
regression analysis indicated that for the majority of 
contractors there is a significant relationship between 
time and cost. The price-time curves developed for nine 
out of fourteen contractors that have performed three or 
more A+B contracting job for Oklahoma Department of 
Transportation have R-square of 80% or more. In other 
words, for the majority of the contractors the developed 
models account for 80% or more of the variation in Cost 
Index. For some contractors a quadratic relationship is 
significant and for others a linear relationship. 

The results of this study shed light on the cost-time 
function of contractors working for Oklahoma 
Department of Transportation (ODOT). This study shows 
an application of data mining in extracting knowledge 
from the historical bid information. The review of 
literature indicates that the main obstacle in developing 
price-time curves have been lack of access to contractors’ 
internal financial information. In other words, contractors 
are reluctant in providing access to their financial 
information in order to remain competitive in the market 
by not revealing their strategies. The ability to determine 
the cost-time function of contractors would enable not 
only Oklahoma Department of Transportation (ODOT) to 
evaluate the capabilities of contractors in terms of 
construction acceleration but also contractors to analyze 
the bidding strategies of their competitors in order to 
obtain the competitive edge for winning the bid 
competition. 

As the continuation of this study the authors would 
perform case studies to analyze the impact of different 
Unit Time Values (UTVs) on the competitiveness of 
contractors in A+B bidding. The results of these studies 
would enable State Highway Agencies (SHAs) to 
determine the optimum Incentive/Disincentive rates that 
maximize the competition among contractors and result in 
selection of the most efficient contractor in construction 
acceleration.  
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