Outflow properties of 24 DIGITembedded soruces

  • Kang, Seonmi (School of Space Research, Kyung Hee University) ;
  • Lee, Jeong-Eun (School of Space Research, Kyung Hee University) ;
  • Choi, Minho (Korea Astronomy and Space Science Institute) ;
  • Evans, Neal J. (Department of Astronomy, The University of Texas at Austin) ;
  • Dunham, Michael M. (Department of Astronomy, Yale University)
  • Published : 2013.10.08

Abstract

We present a study of outflows on 24 embedded young stellar objects (YSOs), which are selected from the sources of the Dust, Ice, and Gas in Time (DIGIT) Herschel key program. Molecular outflow activity, which is believed to have strong dependence on accretion process, is the most powerful in the early embedded phase of star formation and declines as the central protostars evolve to the main sequence stage. In order to study the relation between the CO outflow observed in low J transitions and the properties of protostars, we mapped the CO outows of the selected targets in J = 1-0 and J = 2-1 lines with the 14-m TRAO telescope and the 6-m SRAO telescope, respectively. We estimate CO outflow momentum fluxes (Fco) and compare with bolometric luminosity, Lbol, bolometric temperature, Tbol, and the FIR molecular line luminosities of CO, $H_2O$, OH and [O I], which were detected by the Herschel-PACS observations. We found that $Fco_{1-0}$ is greater than $Fco_{2-1}$, and the mean ratio is about 2. L1455-IRS3 and IRAM04191 have high Fco in spite of low $L_{bol}$. The well known correlation between Fco and $L_{bol}$. is not very evident from all our samples. However, Fco and $L_{bol}$. show a rather strong correlation if L1455-IRS3 and IRAM04191 are excluded. Fco shows little correlation with FIR line luminosities of individual species, while the total FIR line luminosity summed over CO, $H_2O$, OH, and [OI] lines seems to have some correlation. In addition, we report 22 GHz $H_2O$, and 44 GHz CH3OH maser line detections in four sources out of the 24 YSOs.

Keywords