Effects of the Initial Conditions on Cosmological N-body Simulations

  • Published : 2013.10.08

Abstract

Cosmology is entering an era of percent precision with large surveys, demanding accurate simulations. In this paper, we aim to study the effects of initial conditions on the results of cosmological simulations, which will help us to make percent-level accuracy simulations. For this purpose, we use a series of cosmological N-body simulations with varying initial conditions. We test the influence of the initial conditions, namely the pre-initial configuration (preIC), the order of the perturbation theory, and the initial redshift, on the statistics associated with the large scale structures of the universe such as the halo mass function, the density power spectrum, and the maximal extent of the large scale structures. We find that glass or grid pre-initial conditions give similar results. However, the order of the Lagrangian perturbation theory used to generate the initial conditions and the starting epoch of the simulations play a crucial role, especially at high redshift (z ~ 2-4). The initial conditions have to be chosen with care, taking into account the specificity of the simulation.

Keywords