소음 측정 시 포함된 매미 울음소리의 보정 방법

Calibration method of cicada sounds from noise measurement data

김필립*·전형준**·류훈재**·박태호**·장서일* Phillip Kim, HyungJoon Chun, Hunjae Ryu, Taeho Park, Seo Il Chang

1. 서 론

소음을 측정함에 있어서 대상 소음을 제외한 다른 소음이 함께 측정되는 것은 측정된 자료의 효용성을 떨어지게 만들 뿐만 아니라 자료의 신뢰성까지도 부 족하게 만들 수 있다. 하지만 현실적으로 측정 과정 에 있어서 대상 소음 이외의 소음을 배제하는 것은 불가능에 가깝다고 볼 수 있다. 그렇기 때문에 측정 과정이 아닌 결과를 보정하는 방법이 주로 사용되고 있다.

여름철 야외에서 소음을 측정할 때는 매미를 포함한 많은 곤충들의 울음소리가 결과에 포함된다. 이런 상황을 방지하기 위해 주로 이 기간에 측정을 하지 않는 방향으로 계획을 잡지만, 피치 못한 사정으로 측정을 해야 하는 경우가 발생할 수도 있다. 따라서 이러한 상황을 보완하기 위해서 보정법이 꼭필요하게 될 것이다.

본 연구는 철도 소음 측정 과정에서 포함된 매미 울음소리의 특성에 대하여 분석하고, 분석 결과를 바탕으로 매미소리를 보정하는 방법에 대해서 연구 하였다.

2. 연구내용

2.1 측정 방법 및 결과

(1) 측정 조건 및 방법

측정은 2013년 7월 26일, 9월 4일 양 일에 걸쳐서 철도 소음을 대상으로 진행하였다. 7월 26일 주간 2회 측정 시에는 매미 울음소리가 상당히 크게들렸으며, 9월 4일 주간 측정 시에는 매미 울음소리

† 교신저자; 정회원, 서울시립대학교 환경공학부 E-mail: schang@uos.ac.kr

Tel: 02) 6490-2865, Fax: 02) 6490-5440

* 서울시립대학교 환경공학부

가 전혀 들리지 않았다. 또한 야간 측정 시 양 일 모두 매미 울음소리가 들리지 않았다.

Table 1 Summary of measurement conditions

Measurement		Measurement time	No. of trains (outer circle line)	No. of trains (inner circle line)	
Case	Jul 26	Day-time 1	09:23~10:23	14	14
1	Jul 20	Day-time 1 Day-time 2	18:25~19:25	19	17
	Sep 4	Night-time	22:00~23:00	10	9
Case 2		Day-time 1	08:30~09:30	17	23
		Day-time 2	18:30~19:30	20	18
		Night-time	22:00~23:00	11	11

(2) 측정 결과 검증

측정 결과의 검증은 비슷한 조건에서 측정된 결과의 비교를 통해서 할 수 있다. 양 일 두 번의 측정에서 모두 야간 측정 시에는 운행 속도, 운행 대수등의 조건이 유사하였으며, 매미 울음소리 또한 포함되지 않았기 때문에 둘의 주파수별 소음도 측정결과가 유사하다면, 이를 통해 주간에서도 같은 조건에서 측정되었다는 것을 유추할 수 있다.

Table 2 Comparison of night-time measurement data

Freq.	Night-time [dB(A)]		
[Hz]	Case 1	Case 2	Diff.
16.0	26.7	26.6	0.1
31.5	30.3	27.7	2.6
63.0	41.4	38.4	3
125	48.2	49.0	-0.8
250	51.7	51.7	0
500	55.3	55.7	-0.4
1000	57.1	56.9	0.2
2000	53.7	53.7	0
4000	49.6	48.3	1.3
8000	46.0	43.4	2.6
16000	46.2	42.0	4.2
Overall	61.6	61.5	0.1

^{**} 서울시립대학교 에너지환경시스템공학과

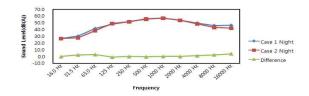


Figure 1 Comparison of night-time measurement data

두 차례의 야간 측정 결과를 비교하여 보면 매우 유사한 형태를 나타냄을 알 수 있다.

(3) 측정 결과 비교

위의 Table 3을 통하여 두 번의 측정에서 16Hz ~2kHz 범위에서는 소음도가 크게 차이나지 않지만, 4kHz 이상의 범위에서는 3.2~21.7 dB(A)의 큰 차이를 보이고 있다. 이는 매미 울음소리에 의한 것으로 보이며, 이를 보정할 필요가 있다고 생각된다.

Table 3 Comparison of day-time 1 measurement data

Freq.	Day-time 1 [dB(A)]		Day-time 2 [dB(A)]			
[Hz]	Case 1	Case 2	Diff.	Case 1	Case 2	Diff.
16.0	26.7	26.6	0.1	26.5	26.5	0
31.5	35.3	29.3	6	32.2	29.1	3.1
63.0	45.1	42.2	3.1	44.4	41.5	2.9
125	50.3	52.0	-1.7	50.4	51.3	-0.9
250	56.4	55.1	1.3	54.5	54.6	-0.1
500	59.5	59.1	0.4	57.9	58.4	-0.5
1000	60.6	60.3	0.3	59.0	59.2	-0.2
2000	58.1	57.4	0.7	56.1	56.2	-0.1
4000	69.2	51.3	17.9	62.2	50.8	11.4
8000	65.6	43.9	21.7	59.5	46.3	13.2
16000	50.2	47.0	3.2	50.3	43.2	7.1
Overall	71.8	64.9	6.9	66.8	64.0	2.8

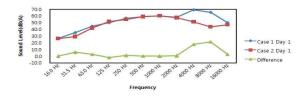


Figure 2 Comparison of day-time 1 measurement data

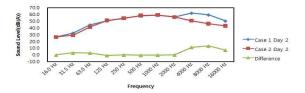


Figure 3 Comparison of day-time 2 measurement data

2.2 매미 울음소리 보정 및 검증

(3) 보정 방법

매미 울음소리 보정을 위해서 16Hz~2kHz범위에서 두 측정값의 차이를 에너지 평균하여 보정치로 사용하였다. 그리고 매미소리가 없는 주파수별 측정 값의 4kHz~16kHz의 범위의 소음도에 앞에서 구한 보정치를 더하여 매미 울음소리가 날 때의 철도 소음을 유추하였다.

Table 4 Calibrated Case 1

Freq. [Hz]	Day-time 1 [dB(A)]	Day time 2 [dB(A)]
16.0	26.7	26.5
31.5	35.3	32.2
63.0	45.1	44.4
125	50.3	50.4
250	56.4	54.5
500	59.5	57.9
1000	60.6	59
2000	58.1	56.1
4000	53.2	51.6
8000	45.8	47.1
16000	48.9	44.0
Overall	65.1	64.1

(4) 보정의 검증

보정 방법을 통해서 나온 소음도를 비교 분석하여 보정이 올바르게 되었는지 검증 할 필요가 있다. Table 4의 소음도를 Table 3의 Case 2 소음도와 비교하면 약 3.0dB(A) 이내의 차이를 나타내는 것 을 알 수 있다. Table 5의 Leq 비교와 운행속도 비 교를 통해서 보정이 적절하였음을 알 수 있다.

Table 5 Comparison of noise levels for each case

[dB(A)]	Case 1	Case 2	Calibrated Case 1
Day-time 1	71.8	64.9	65.1
Day-time 2	66.8	64.0	64.1
Night-time	61.6	61.5	61.5
Speed	58~63km/h	55~60km/h	58~63km/h

3. 결 론

소음 측정 시 포함된 매미 울음소리 보정을 위해서 매미 울음소리가 포함되지 않은 소음도를 이용하여 보정값을 유추하였다. 매미 소리는 주로 4kHz~16kHz에 분포하는 것을 알 수 있었으며, 추후 더많은 연구를 통하여 매미 울음소리 등 기타 소음의보정 방법을 일반화 할 수 있을 것으로 예상한다.