A Simultaneous Recognition Technology of Named Entities and Objects for a Dialogue Based Private Secretary Software

대화형 개인 비서 시스템을 위한 하이브리드 방식의 개체명 및 문장목적 동시 인식기술

  • Published : 2013.10.06

Abstract

기존 대화시스템과 달리 대화형 개인 비서 시스템은 사용자에게 정보를 제공하기 위해 앱(APP)을 구동하는 방법을 사용한다. 사용자가 앱을 통해 정보를 얻고자 할 때, 사용자가 필요로 하는 정보를 제공해주기 위해서는 사용자의 목적을 정확하게 인식하는 작업이 필요하다. 그 작업 중 중요한 두 요소는 개체명 인식과 문장목적 인식이다. 문장목적 인식이란, 사용자의 문장을 분석해 하나의 앱에 존재하는 여러 정보 중 사용자가 원하는 정보(문장의 목적)가 무엇인지 찾아주는 인식작업이다. 이러한 인식시스템을 구축하는 방법 중 대표적인 방법은 사전규칙방법과 기계학습방법이다. 사전규칙은 사전정보와 규칙을 적용하는 방법으로, 시간이 지남에 따라 새로운 규칙을 추가해야하는 문제가 있으며, 규칙이 일반화되지 않을 경우 오류가 증가하는 문제가 있다. 또 두 인식작업을 파이프라인 방식으로 적용 할 경우, 개체명 인식단계에서의 오류를 가지고 문장목적 인식단계로 넘어가기 때문에 두 단계에 걸친 성능저하와 속도저하를 초래할 수 있다. 이러한 문제점을 해결하기 위해 우리는 통계기반의 기계학습방법인 Conditional Random Fields(CRF)를 사용한다. 또한 사전정보를 CRF와 결합함으로써, 단독으로 수행하는 CRF방식의 성능을 개선시킨다. 개체명과 문장목적인식의 구조를 분석한 결과, 비슷한 자질을 사용할 수 있다고 판단하여, 두 작업을 동시에 수행하는 방법을 제안한다. 실험결과, 사전규칙방법보다 제안한 방법이 문장단위 2.67% 성능개선을 보였다.

Keywords