RF 마그네트론 스퍼터링으로 중착한 BaWO4:Eu 박막의 특성에 열처리 온도가 미치는 영향 Effect of Annealing Temperature on the Properties of BaWO4:Eu Thin Films deposited by RF Magnetron Sputtering

정우진^{a*}, 황수민^a, 박태준^a, 장원우^a, 김춘수^a, 조신호^b a*부산과학고등학교, ^b신라대학교 신소재공학과(E-mail: scho@silla.ac.kr)

초록: 라디오파 마그네트론 스퍼터링 방법을 사용하여 유리 기판 위에 Eu 이온이 도핑된 BaWO4 박막을 성장 시킨 후에 온도 범위 400~550 ℃에서 급속 열처리를 수행하였다. 박막의 결정 구조와 표면 형상은 각각 x-선 회절법과 주사전사현미경으로 조사였다. 급속 열처리 온도에 관계없이 모든 적색 형광체 박막은 622 nm에 피크를 갖는 적색 발광을 나타내었고, 열처리 온도가 400 ℃에서 550 ℃로 증가함에 따라 적색 발광 스펙트럼의 세기는 감소하는 경향을 보였다.

1. 서론

최근에 평면 디스플레이, 태양전지, 투명 전극 개발을 위한 산화물 형광체 박막에 대한 연구가 활발히 진행되고 있다 [1]. 본 연구에서는 XRD, SEM, PL 측정 장비를 사용하여, 급속 열처리 온도가형광체 박막의 결정 구조, 표면 형상, 광학적 특성에 미치는 영향을 조사하였다. 이를 수행하기 위하여, 고상반응법을 이용하여 Eu 이온이 도핑된 BaWO₄ 형광체 분말을 합성하였고, 그 이후에 압축과소결 작업을 실시하여 직경 1인치의 세라믹 타켓을 제조한 후, 라디오파 마그네트론 스퍼터링 방법을 사용하여 진공 챔버에서 증착 온도 400℃에서 형광체 박막을 증착하였다.

2. 본론

BaWO₄:Eu 형광체 박막은 RF 마그네트론 스퍼터링 장치를 사용하여 중착 온도 400℃에서 유리 기판 상부에 중착되었다. 스퍼터링 타겟으로는 직경 1 인치, 두께 15 mm를 갖는 세라믹 BaWO4:Eu를 사용하였다. 스퍼터링 가스로 아르곤 가스를 사용하였으며, 중착시 기판의 온도는 시편 고정대 뒤에 장착되어 있는 할로겐 램프를 가열하여 400℃로 고정하였고, 시편 고정대를 15 rpm의 속도로 회전시켰다. 형광체 박막을 중착한 후에 급속열처리 전기로를 사용하여 박막을 각각 400, 450, 500, 550 ℃에서 열처리하였다.

파장 274 nm로 여기 시킨 급속 열처리 온도를 달리하여 합성한 BaWO₄:Eu 형광체 박막의 발광 스펙트럼을 Fig. 1에 나타내었다. 급속 열처리 온도에 관계없이, 성장한 모든 형광체 박막은 두 종류의 발광 스펙트럼을 나타내었다: i) 파장 622 nm와 702 nm에 피크를 갖는 주된 적색 발광, ii) 주피크와 비교하여 발광 세기가 상대적으로 약한 595 nm에 피크를 갖는 주황색 발광 스펙트럼들이 관측되었다. 이 발

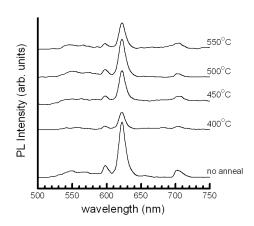


Fig. 1. Luminescence spectra of BaWO₄:Eu phosphor films annealed at different annealing temperatures.

광 신호들은 Eu^{3+} 이온의 ${}^5D_0 \rightarrow {}^7F_J$ (J=1,2) 전이에 의하여 발광된 스펙트럼들인데, 주황색 발광 스펙트럼은 J=1에 의한 자기쌍극자 (magnetic dipole) 전이 신호이며, 적색 형광 스펙트럼들은 J=2에 의해 방출되는 유도 전기쌍극자 (induced electric dipole) 신호로 알려져 있다. 이외에도, 발광 스펙트럼의 세기와 결정 입자의 크기와 형상에 대한 관계가 조사되었다.

3. 결론

라디오파 마그네트론 스퍼터링 방법을 사용하여 증착 온도 400℃에서 BaWO₄:Eu 박막을 증착한 다음에 다양한 온도에서 급속 열처리를 수행하였다. 형광체 박막의 결정 구조는 육방정계이었으며, SEM 측정으로부터, 400 ℃에서 열처리한 형광체 박막의 경우에 결정 입자의 크기가 50 nm 임을 확인하였으며, 급속 열처리 온도에 관계없이 모든 적색 형광체 박막은 622 nm의 피크를 갖는 적색 발광임을 관측하였다.

참고문헌

1. J. H. Cha and H. W. Choi, Trans. Electr. Electron. Mater. 12 (2011) 11.