단일 스위치 쿼지-공진 CLL 절연형 컨버터

김민국, 유승희, 신승민, 이병국 성균관대학교 정보통신대학

Single Switch Quasi-resonant CLL Isolated Converter

Min Kook Kim, Seung Hee Ryu, Seung Min Shin, Byoung Kuk Lee Sungkyunkwan University College of Information & Communication Engineering

ABSTRACT

본 논문에서는 단일 스위치를 이용한 준공진 CLL 구조의 절연형 컨버터를 제안한다. 제안하는 회로는 부가적인 스위치 없이 1차측 주 스위치의 턴 온 및 턴 오프시 소프트스위칭을 이루어 스위칭 손실을 최소화한다. 또한 2차측 다이오드 역시 소프트 스위칭이 가능하다. 이를 검증하기 위하여 이론적으로 분석하여 수식을 도출하였으며 48V/150W simulation을 통하여타당성을 검증하였다.

1. 서 론

DC DC 컨버터의 전력 밀도 및 효율 향상을 위하여 고주파스위칭 및 소프트 스위칭이 가능한 공진형 컨버터 연구가 활발히 진행되고 있다. 또한 가격 저감을 목적으로 준공진 기법을 적용한 단일 스위치 절연형 컨버터 토폴로지가 제안되고 있다. [1],[2] 하지만, 1차측 주 스위치 턴 오프시 소프트 스위칭을이루지 못하는 단점이 있으며[1], 턴 온시 공진에 의한 전류 피크치가 증가하는 문제가 있다^[2].

본 논문에서는 forward 컨버터와 flyback 컨버터의 장점을 조합하여 모든 능동 소자의 스위칭시 소프트 스위칭이 가능한 토폴로지를 제안한다. 본론에서는 동작 모드 구분 및 수식을 전개하고, 시뮬레이션을 통해 소프트 스위칭 여부를 확인하였다.

2. 본 론

2.1. 단일 스위치 쿼지 공진 CLL 절연형 컨버터

본 논문에서 제안하는 토폴로지는 스위치 턴 온 시에 에너지를 2차 측으로 전달하고, 스위치 턴 오프시에는 공진하며 에너지를 순환하는 구조로 구성되어 있다. 이 때 1차측의 주 스위치와 2차측의 다이오드는 턴 온, 턴 오프시에 소프트 스위칭하도록 하여 스위칭 손실을 줄였다. 이를 위하여 공진 인덕터 Lr과 공진 커패시터 Cr을 추가하였다. 회로도는 그림 1과 같다.

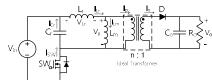


그림 1 단일 스위치 쿼지 공진 CLL 절연형 컨버터 Fig. 1 Single Switch Quasi-Resonant CLL Isolated Converter

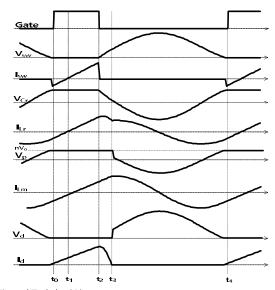


그림 2 이론적인 파형 Fig. 2 Theoretical Wave Forms

2.2. 동작 특성

제안하는 토폴로지를 공진 커패시터의 전압, 공진 인덕터 전류에 따라 4가지 모드로 구분하였으며 이를 그림 2와 같이 나타내었다. 또한 이때의 파형은 그림 3과 같다.

1) mode 1 [t0, t1]

mode 1에서 전류는 주 스위치의 역병렬 다이오드를 통해 흐르며 이때 1차 측의 전류 관계는 식 (1)과 같다. 이때 공진 커패시터 전압은 식 (2)와 같다. 공진 인덕터에 흐르는 전류는 입출력 전압 관계를 이용하여 식 (3)과 같이 나타낼 수 있다. mode 1에서 주 스위치 양단의 전압은 0이므로 주 스위치는 ZVS 턴온이 가능하다. 또한 2차 측의 다이오드도 ZCS 턴온하며 주 스위치 턴온시 mode 2가 시작된다.

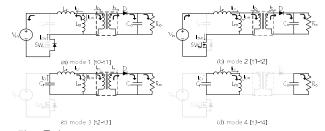


그림 3 동작 모드 Fig. 3 Operational Modes

$$I_{L_r}(t) = I_{L_m}(t) - I_p(t) \tag{1}$$

$$V_{C_r}(t) = V_{in} \tag{2}$$

$$I_L(t) = \frac{1}{L_r}(V_{in} - nV_o)(t - t_0) + I_L(t_0)$$
(3)

2) mode 2 [t1, t2]

mode 2에서의 전류 관계는 식 (1)와 같다. mode 2에서의 동작은 주 스위치의 역병렬 다이오드가 아닌 주 스위치를 통해전류가 흐른다는 것을 제외하고는 mode 1과 동일하므로 공진커패시터에 걸리는 전압은 식 (2)와 같고, 공진 인덕터에 흐르는 전류는 식 (3)과 같이 나타낼 수 있다. mode 2 동안 mode 1과 마찬가지로 공진 커패시터에는 전류가 흐르지 않으며 입력전압 크기만큼의 전압이 인가된다. mode 2는 주 스위치를 ZVS 턴 오프 해줌으로써 종료된다.

3) mode 3 [t2, t3]

이 구간에서 공진 커패시터는 공진 인덕터와 공진하며 자화 인덕터와 트랜스포머의 1차측 전류를 공급한다. 공진 인덕터 전류는 식 (4), 공진 커패시터 전압은 식(5)과 같이 나타낼 수 있고, 식 (6)은 이때의 공진 주파수를 나타낸다. 공진 인덕터 전류와 자화 인덕터 전류가 같아지면 mode 3은 종료되고 2차 측의 다이오드는 ZVS 턴 오프한다.

$$I_{L}(t) = -\frac{V_{in} + nV_{0}}{\omega_{r1}L_{r}}\sin\omega_{r1}(t - t_{2})$$
(4)

$$V_{C_r}(t) = (V_{in} + nV_0)\cos\omega_{r1}(t - t_2) - nV_0$$
(5)

$$\omega_{rl} = \frac{1}{\sqrt{L_r C_r}}$$
(6)

4) mode 4 [t3, t4]

mode 3에서는 공진 커패시터, 공진 인덕터, 자화 인덕터가 공진하며 전원으로서의 역할과 부하로서의 역할을 교대로 수행하게 된다. 이때의 공진 인덕터 전류, 공진 커패시터 전압, 공진주과수를 나타내면 식(8),(9),(10)과 같이 나타낼 수 있다. 공진에 의하여 공진 커패시터가 입력전압만큼 충전되고 주 스위치의 양단 전압이 0이 되면 주 스위치의 역병렬 다이오드가 ZVS 턴 온된다. 이후 mode 1이 시작되어 주기 반복한다.

$$I_{L}(t) = -I_{L}(t_{3})\cos\omega_{2}(t - t_{3}) - \frac{I_{L}(t_{3})}{\omega_{2}}\sin\omega_{2}(t - t_{3})$$
(8)

$$V_{C}(t) = -\omega_{2} \cdot (L_{r} + L_{m}) \cdot I_{L}(t_{3}) \sin \omega_{2}(t - t_{3}) - (L_{r} + L_{m}) \cdot I_{L}(t_{3}) \cos \omega_{2}(t - t_{3})$$
(9)

$$\omega_{r2} = \frac{1}{\sqrt{(L_r + L_m)C_r}}$$
(10)

표 1 시뮬레이션 파라미터

Table 1 Simulation Parameters

종류	파라미터값
입력 전압 [V]	400
출력 전압 [V]	48
출력 전력 [W]	150
공진 커패시턴스 [nF]	15
공진 인덕턴스 [uH]	50
자화 인덕턴스 [uH]	200
스위칭 주파수 [kHz]	80
트랜스포머 권수비(n ₁ :n ₂)	6:1

2.3. 시뮬레이션

토폴로지의 파라미터값 선정의 적합성과 소프트 스위칭 여부를 확인하기 위하여 시뮬레이션을 수행하였으며, 이때 사용한 파라미터는 표 1과 같고, 결과는 그림 4와 같다.

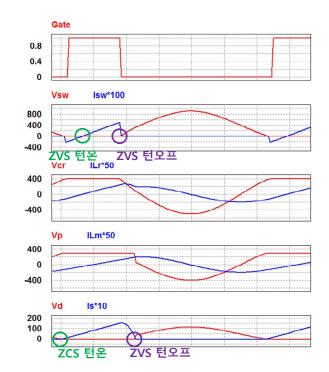


그림 4 시뮬레이션 결과 Fig. 4 Simulation Results

시뮬레이션 결과를 통하여 1차 측의 주 스위치가 ZVS 턴 온, ZVS 턴 오프하는 것을 확인하였고, 2차 측의 다이오드는 ZCS 턴온, ZVS 턴 오프함을 확인함으로써 모든 능동 소자의 소프트 스위칭을 확인하였다.

3. 결 론

본 논문에서는 단일 스위치를 이용한 준공진 CLL 구조의 절연형 컨버터를 제안하였다. 제안한 회로는 추가적인 스위치 없이 하나의 스위치만으로 1차측 주 스위치와 2차측 다이오드의 턴 온, 턴 오프시 소프트스위칭을 달성하여 스위칭 손실을 줄였다. 이를 이론적으로 분석하여 수식 전개하였으며 이를 검증하기 위하여 PSIM을 이용하여 48V/150W 출력의 시뮬레이션을 수행하여 타당성을 검증하였다. 향후 prototype 제작 및실험을 수행할 계획이다.

본 연구는 2012년도 지식경제부의 재원으로 한국에너지기 술평가원 (KETEP)의 지원을 받아 수행한 연구 과제입니다. (No. 20104010100630)

참 고 문 헌

- [1] Jung Min Kwon, Woo Young Choi, Bong Hwan Kwon, "Single Switch Quasi Resonant Converter", IEEE Transactions on Industrial Electronics, Vol. 56, No. 4, pp. 1158 1163, 2009, April
- [2] Amin Emrani, Ehsan Adib, Hosein Farzanehfard, "Single Switch Soft Switched Isolated DC DC Converter", IEEE Transactions on Power Electronics, Vol. 27, No. 4, pp. 1952 1957, 2012, April