

유무기 융합심재 기술을 적용한 샌드위치 패널의 화재안전성 연구

<u>박계원</u>・정재군 방재시험연구원

Study on the reaciton-to-fire performance of sandwich panel combined with mineral & organic core materials

Kye-Won Park · Jae-Gun Jeong
FILK (Fire Insurers Laboratories of Korea)

ABSTRACT

This study aims to develop new combined sandwich panel with good fire resistant and insulated effects which is used by recycling technique for 2 years projects. At present, new sandwich panel has been successfully developed and got 2 kinds of patent.

1. 서 론

1.1 연구 개요

본 연구에서는 이러한 폐제품을 재생한 단열재의 기초적인 물리적인 성능, 단열성능, 화재안전성능을 평가하고 향후 활용가능성에 대해서 연구하고자 한다. 본 연구의 시제품은 무기물(글라스울, 미네랄울)의 강점인 화재안전성과 유기물(스티로폼)의 강점인 단열성을 극대화시키도록 혼합한 제품으로서, 현재 시제품에 대한 개발과 검증이 완료된 상태이다. 본 논문에서는 상기와 같이 유무기 심재에 대한 융합을 통해 개발된 제품의 제반 성능에 대한 요약하고자 하며, 특히 단열성 및 화재안전성에 대해 중점적으로 소개하고자 한다.

1.2 단열성 시험 개요

단열성은 열의 복사, 전도, 대류 등을 총괄적으로 측정하는 Mockup 시험방법인 열관류

25hyun@daum.net

율(Thermal Transmittance)로 산출하였으며, KS F 2273:2009 (조립용 판 및 그 구조부분의 성능 시험 방법)에서 규정한 방법에 의하여 가열상자와 저온실 사이에 시험체를 설치, 규정된 온도조건에서 정상상태에 도달한 후 가열상자 및 저온실의 공기온도, 가열상자 공급열량 등을 측정하여 산출하였다. 열관류율은 정상상태가 된 후, 1시간 간격으로 측정한 3회의 측정결과를 이용하여 다음 식에 따라 각각 구하여 평균을 산출하게 된다.

Table 1. Thermal Transmittance value calculation

$K = \frac{1}{R} = \frac{Q}{(\Theta_{Ha} - \Theta_{Ca}) \cdot A}$					
K	열관류율 [W/(m²·K)]	Θ_{Ha}	가열상자의 공기 온도[℃]		
R	열관류 저항 [(m²·K)/W]	$\Theta_{\it Ca}$	저온실의 공기 온도[℃]		
Q	가열상자의 공급열량 [W]	A	시험체 전열면적[m²]		

1.2 난연성 시험 및 실물규모 화재시험 개요

난연성은 국토해양부고시에서 활용하고 있는 KS F ISO 5660-1로 측정하였으며, 주 측정 항목은 열방출율이 된다. 열방출율은 재료의 연소에 필요한 산소의 양에 비례(연소시 산소 1 kg이 소비되면 약 13.1 MJ의 열이 방출)하는 원리를 이용하여 측정되며, 본 연구에서는 시료를 곤칼로리미터에 수평방향으로 설치하고 외부 점화장치를 부착한 상태로 50 kW/m²의 복사열에 10분 동안 노출시켜 착화되는 시간과 착화된 시료로부터 착화시간과 열방출율을 측정하였다. 또한 실물규모 화재시험은 해당 국제표준의 국가표준 부합화 된 KS F ISO 13784-1에의해 수행되었다.

2. 연구 결과요약

2.1 기초 물리성능 시험 결과요약

샌드위치 패널 제품이 보유하여야 국가 KS 표준인 KS F 4724(건축용 철강제 벽판)에서 요구되는 기초 성능 시험결과는 아래와 같으며, 강도시험의 기준을 모두 충족시키고 있음을 알수 있다.

			•		
면내전단강도에 의한 구분	980	4,900	9,800	14,700	980 등급
전단력(N/m)	980 이상	4,900 이상	9,800 이상	14,700이상	300 34
축방향압축강도에 의한 구분	4,900	9,800	19,600	29,400	0.000 = 7
(N/m)	4,900 이상	9,800 이상	19,600이상	29, 400 이상	9 800 등급
충격감도에 의한 구분	6.5	16.0	25.5	39.5	25.5 등급
충격에너지 J	6.5 이상	16.0이상	25.5 이상	39.5 이상	23.3 = 5
분포압강도에 의한 구분	695	1,225	2,255	3,925	1 000 50
N/m²	695 이삼	1,225 이상	2,255 이상	3, 925 이상	1 255 등급
열전도뮬	가	나	다	라	1150
₹/nK	0.034 이상	0.035-0.040	0.041-0.046	0.047-0.051	나등급

Table 1. Result of KS F 4724 physical performance property

2.1 단열성 시험 결과요약

폐EPS와 폐Glass wool의 입자를 혼합하여 압축한 보드에 철판을 접착한 샌드위치패널에 대한 시제품을 KS F 2273에 따른 단열성 시험결과를 분석해보면 0.62 W/(m²·K)의 값을 나타났다. 이는 EPS와 Glasswool의 일반적인 열관류 성능의 중간정도의 단열성을 보이는 것으로 폐자원을 활용하였음에도 탁월한 단열성능을 나타냄을 알 수 있다..

측 정 1	횟수	공급열량 Q(W)	가열상자 공기온도 Θ _{Ha} (℃)	저온실 공기온도 Θ _{Ca} (℃)	항온실 공기온도 Θ _{Ga} (℃)	열관류율 <i>K</i> [W/(m²·K)]
	1	40.14	20.08	-0.08	20.13	0.61
결 과	2	40.22	20.06	-0.03	20.11	0.62
	3	40.26	20.05	-0.08	20.12	0.62
Ľ		울 K = 0.62 V 이항 R = 1.62		I R	= 1/R = (Θ _{Ha} : 열관류저항[(: 시험체 전열	m² · K)/W]

Table 2. Result of KS F 2273 Thermal tramsmittance value (K)

2.2 난연성 시험 결과요약

KS F ISO 5660-1의 시험결과, 열방출율(HRR, Heat Release Rate)은 6 kW/m²의 최대 열 방출율 값을 보였으며, 총열방출율(THR, Total Heat Release)는 0.9 MJ/m²를 나타내었다. 이는 현재 국토해양부고시에서 요구(Table 3)의 난연등급인 HRR 200 kW/m² 이하, THR 8 MJ/m²를 충족시키는 것으로서 준불연재에 해당되는 것으로 분석되었다.

Figure 1. Heat release rate result

2.3 실물규모 화재 시험 결과요약

KS F ISO 13784-1에 의한 실물규모 화재안전성 평가결과에서, 플래시오버는 발생하지 않았으며 화재성장지수는 0.15 kW/s로 유럽 EN 13501-1의 내장재 등급분류상 최고 안전 평가등급으로 분류 될 수 있다.

	시 험 결과		
	최대 열방출율(HRR _{max})	418.6 kW	
	최대 연기발생율(SPR _{max})	3.60 m ² /s	
건축용 패널 실물화재시험	화재성장지수 (FIGRA)	0.15 kW/s	
	연기성장지수 (SMOGRA)	$4.82 \text{ m}^2/\text{s}^2$	
	플래시오버(Flashover) 발생여부	발생하지 않음	

Table 3. Result of KS F ISO 13784-1

3. 결 론

건축용 철강재 벽판으로 활용되기 위해 KS표준(KS F 4724)에서 요구하는 성능에는 단열성과 연소성 이외에도, 차음성·방청성 및 강도류의 시험(면내전단강도, 축방향 압축강도, 충격강도, 분포압강도) 등이 있다. 본 연구를 통해 개발된 패널은 KS F 4724에서 보유해야 할 대표적 성능인 단열성과 연소성 뿐만 아니라 기초적인 물성을 충족시키고 있으며, 나아가서 샌드위치 패널의 국제표준인 ISO 13784-1 실물규모 화재시험을 수행한 결과 성능등급이 우월하게 나타났음. 현재 시제품에 대한 개발단계이나 향후 양산화시스템이 구축될 경우 품질 확보차원의 재현성 검증 및 본격적인 성능위주의 연구를 통해 광범위한 분석의 수행이 필요로 되어진다.

감사의 글

본 연구는 중소기업청 첨단장비활용기술개발사업의 지원으로 수행되었습니다.

참고문헌

- KS F ISO 5660-1, "연소성능 시험-열방출, 연기발생, 질량감소율-제1부:열방출률(콘칼로리미터법)", 2008
- 2. KS F 4724, "건축용 철강제 벽판", 2009
- 3. KS F 2273, "조립용 판의 성능시험 방법", 2009