초고압 공정을 이용한 Curcuma longa Linne 추출물의 미백효과 증진

강원대학교 생물소재공학과 : 김지선, 서용창, 최운용, 이춘근, 송치호, <u>이현용</u> 세바바이오텍 : 임혜원 전라북도 농업기술원 : 안민실

Enhancement of Ultra High Pressure Extracts Whitening Effect of Curcuma longa Linne leaves

¹Department of Biomaterials Engineering, Kangwon National University, Chuncheon 200-701, Korea

²Shebah Biotech Co., Chuncheon Bioindustry Foundation Bio-1 #412, Chuncheon 200-702, Korea

³Jeonbuk Provincial ARES, Iksan 570-704, Korea Ji Seon Kim¹, Yong Chang Seo¹, Woon Yong Choi¹, Choon Geun Lee¹, Chi Ho Song¹, Hye Won Lim², Min Sil Ahn³, Hyeon Yong Lee^{1*}

실험목적 (Objectives)

We performed this study in order to measure whitening effect of *Curcuma longa* Linne leaves which are the possibility of coming in contact frequently.

재료 및 방법 (Materials and Methods)

Materials

Curcuma longa Linne leaves was extracted by water extraction at 100° C and 60° C, 70% ethyl alcohol extraction at 60° C and ultra high pressure extraction at 500° Ma for 30 minutes at 60° C.

Methods

In order to measured whitening effects, we performed tyrosinase inhibitory activity and melanogenesis inhibitory activity using Clone M-3.

실험결과 (Results)

The extracts from HPE process showed the highest tyrosinase inhibition as 44%(w/w) in adding 1 mg/mL of the samples. The other extracts of WE100, WE60 and EE show relatively low activities such as 31.5, 28.6, 35.8%(w/w), respectively. Melanin inhibitory activities showed the highest inhibition ratio as 40%(w/w) for the case of adding the extracts from ultra high pressure extraction, and others of WE100, WE60 and EE were estimated as 36.8, 31.4 and 36.9%(w/w), respectively. In generally, improving of whitening activities of the extracts because of easy destruction of cell membranes and elution of high amounts of active contents.

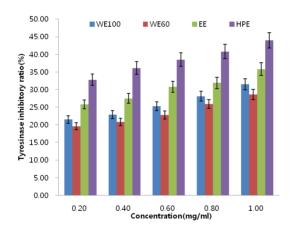

주저자 연락처 (Corresponding author) : 이현용 E-mail : hyeonl@kangwon.ac.kr Tel : 033-256-4819

Table 1. The extraction yields of *Curcuma longa* Linne leaves according to different extraction processes.

Curcuma longa Linne leaves	
Extraction condition [‡]	Yields(%) [†]
WE100	12.61 ± 0.33 A
WE60	$10.45 \pm 0.42 \text{ A}$
EE	$9.51 \pm 0.54 \text{ B}$
HPE	$13.88 \pm 0.16 \text{ C}$

^{*} Mean values \pm SD from triplicate separated experiments are shown. Mean with difference letter (A-C) within extraction yields are significantly different at p < 0.05.

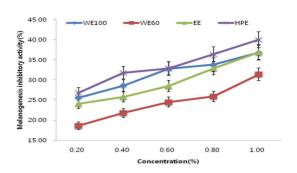

^{*}WE100: water extraction at 100°C, WE60: water extraction at 60°C EE: 70% ethyl alcohol extraction at 60°C HPE: high pressure extraction for 30 minutes at 60°C with 70% ethyl alcohol solvent.

Fig. 1. Tyrosinase inhibitory activities of the extracts of *Curcuma longa* Linne leaves by different extraction processes and concentration.

Mean values±SD from triplicate separated experiments are shown. Mean with difference letter (A-D) within same concentration are significantly different at p < 0.05 and mean with difference letter (a-e) within same sample are significantly different at p < 0.05.

*WE100: water extraction at 100°C; WE60: water extraction at 60°C; EE: 70% ethyl alcohol extraction at 60°C; HPE: high pressure extraction for 30 minutes at 60°C with 70% ethyl alcohol solvent.

Fig. 2. Melanin inhibitory activities of the extracts of *Curcuma longa* Linne leaves by different extraction processes and concentration.

Mean values±SD from triplicate separated experiments are shown. Mean with difference letter (A-D) within same concentration are significantly different at p < 0.05 and mean with difference letter (a-c) within same sample are significantly different at p < 0.05.

* See the Fig. 1. for abbreviation.