NMR study on Ba_{0.5}Sr_{1.5}Zn₂(Fe_{0.92}Al_{0.08})₁₂O₂₂

권상일¹*, 이순칠¹, 천세환², Chai Yi Sheng², 김기훈²

¹대한민국 대전광역시 KAIST 물리학과 ²대한민국 서울특별시 서울대학교 물리천문학과

We did zero-field NMR study on the annealed single crystal of multiferroic helimagnets $Ba_{0.5}Sr_{1.5}Zn_2$ (Fe_{0.92}Al_{0.08})₁₂O₂₂ (Al-BSZFO). This material shows extremely high magnetoelectric susceptibility so that the critical field for switching electric polarization is less than 1 mT below 90 K [1]. NMR frequency change by the temperature follows Bloch's $T^{3/2}$ law which presents the low temperature excitation is ferromagnetic spin wave. The nuclear spin-lattice relaxation rate and the nuclear spin-spin relaxation rate were also measured. Both increased rapidly as the temperature increases above 60 K at which the spin structure changes from normal longitudinal cones (NLCs) to alternating longitudinal cones (ALCs) for the case of as-grown (not annealed) sample [2]. Due to rapid shortening of spin-spin relaxation time, the NMR signal intensity abruptly reduced above 60 K. We also studied rf pulse width and power dependence.

참고문헌

[1] S. H. Chun et al., Phys. Rev. Lett. 104, 037204 (2010).

[2] H. B. Lee et al., Phys. Rev. B 83, 144425 (2011).